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Instruction Codes 

The internal organization of a digital system is defined by the 

sequence of micro operations it performs on data stored in its registers. 

 A computer instruction is a binary code that specifies a sequence of 

micro operations for the computer. Instruction codes together with data 

are stored in memory. The computer reads each instruction from memory 

and places it in a control register. 

An instruction code is a group of bits that instruct the computer to 

perform a specific operation. It is usually divided into parts, each having 

its own particular interpretation. The most basic part of an instruction code 

is its operation part. The operation code of an instruction is a group of bits 

that define such operations as add, subtract, multiply, shift, and 

complement. 

Stored Program Organization 

The simplest way to organize a computer is to have one processor 

register and an instruction code format with two parts. The first part 

specifies the operation to be performed and the second specifies an 

address. The memory address tells the control where to find an operand 



in memory. This operand is read from memory and used as the data to be 

operated on together with the data stored in the processor register. 

Stored program organization 

 

 

Figure depicts this type of organization. Instructions are stored in 

one section of memory and data in another. For a memory unit with 4096 

words we need 12 bits to specify an address since 212 = 4096. If we store 

each instruction code in one 16-bit memory word, we have available four 

bits for the operation code (abbreviated op code) to specify one out of 16 

possible operations, and 12 bits to specify the address of an operand. The 

control reads a 16-bit instruction from the program portion of memory. It 

uses the 12-bit address part of the instruction to read a 16-bit operand from 

the data portion of memory. It then executes the operation specified by th 

operation code. 



Computers that have a single-processor register usually assign to it 

the name accumulator and label it AC. The operation is performed with 

the memory operand and the content of AC. 

Indirect Address 

It is sometimes convenient to use the address bits of an instruction code 

not as an address but as the actual operand. When the second part of an 

instruction code specifies an operand, the instruction is said to have an 

immediate operand. When the second part specifies the address of an 

operand, the instruction is said to have a direct address. 

This is in contrast to a third possibility called indirect address, where the 

bits in the second part of the instruction designate an address of a memory 

word in which the address of the operand is found. One bit of the 

instruction code can be used to distinguish between a direct and an indirect 

address. 



 

Computer Registers 

Computer instructions are normally stored in consecutive memory 

locations and are executed sequentially one at a time. The control reads 

an instruction from a specific address in memory and executes it. It then 

continues by reading the next instruction in sequence and executes it, and 

so on. This type of instruction sequencing needs a counter to calculate the 

address of the next instruction after execution of the current instruction is 

completed. The computer needs processor registers for manipulating data 

and a register for holding a memory address. 

 



List of registers 

  

The memory address register (AR) has 12 bits since this is the width 

of a memory address. The program counter (PC) also has 12 bits and it 

holds the address of the next instruction to be read from memory after the 

current instruction is executed. The PC goes through a counting sequence 

and causes the computer to read sequential instructions previously stored 

in memory. 

Instruction words are read and executed in sequence unless a branch 

instruction is encountered. A branch instruction calls for a transfer to a 

nonconsecutive instruction in the program. The address part of a branch 

instruction is transferred to PC to become the address of the next 

instruction. To read an instruction, the content of PC is taken as the 

address for memory and a memory read cycle is initiated. PC is then 

incremented by one, so it holds the address of the next instruction in 

sequence. 

Two registers are used for input and output. The input register 

(INPR) receives an 8-bit character from an input device. The output 

register (OUTR) holds an 8-bit character for an output device. 

 

 

 



Computer registers and Memory  

 

 

Timing and Control 

The timing for all registers in the basic computer is controlled by a 

master clock generator. The clock pulses are applied to all flip-flops and 

registers in the system, including the flip-flops and registers in the control 

unit. The clock pulses do not change the state of a register unless the 

register is enabled by a control signal. The control signals are generated 

in the control unit and provide control inputs for the multiplexers in the 

common bus, control inputs in processor registers, and micro operations 

for the accumulator. 

There are two major types of control organization: hardwired 

control and micro programmed control. In the hardwired organization, the 

control logic is implemented with gates, flip-flops, decoders, and other 

digital circuits.  

It has the advantage that it can be optimized to produce a fast mode 

of operation.  



In the micro programmed organization, the control information is 

stored in a control memory. The control memory is programmed to initiate 

the required sequence of micro operations.  

 A hardwired control, as the name implies, requires changes in the 

wiring among the various components if the design has to be modified or 

changed. In the micro programmed control, any required changes or 

modifications can be done by updating the micro program in control 

memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Control unit 

 

 

The block diagram of the control unit is shown in Fig. It consists of 

two decoders, a sequence counter, and a number of control logic gates. 

An instruction read from memory is placed in the instruction register (IR). 

The instruction register is divided into three parts: the I bit, the 

operation code, and bits 0 through 1 1. The operation code in bits 12 



through 14 are decoded with a 3 x 8 decoder. The eight outputs of the 

decoder are designated by the symbols D0 through D7• The subscripted 

decimal number is equivalent to the binary value of the corresponding 

operation code. Bit 15 of the instruction is transferred to a flip-flop 

designated by the symbol I. Bits 0 through 11 are applied to the control 

logic gates. The 4-bit sequence counter can count in binary from 0 through 

15. The outputs of the counter are decoded into 16 timing signals T0 

through T15• 

Instruction Cycle 

A program residing in the memory unit of the computer consists of 

a sequence of instructions. The program is executed in the computer by 

going through a cycle for each instruction. Each instruction cycle in turn 

is subdivided into a sequence of sub cycles or phases. In the basic 

computer each instruction cycle consists of the following phases: 

1. Fetch an instruction from memory. 

2. Decode the instruction. 

3. Read the effective address from memory if the instruction has an    

indirect address. 

4. Execute the instruction. 

Upon the completion of step 4, the control goes back to step 1 to 

fetch, decode, and execute the next instruction. This process continues 

indefinitely unless a HALT instruction is encountered. 

Fetch and Decode 

Initially, the program counter PC is loaded with the address of the 

first instruction in the program. The sequence counter SC is cleared to 0, 

providing a decoded timing signal T0. After each clock pulse, SC is 

incremented by one, so that the timing signals go through a sequence T0, 



T1, T2, and so on. The micro operations for the fetch and decode phases 

can be specified by the following register transfer statements. 

T0: AR  PC 

T,: IR M[AR], PC  PC + 1 

T2: D0, • • • , D7  Decode IR(12-14), AR  IR(0-11), 1  IR(l5) 

Determine the Type of Instruction 

The timing signal that is active after the decoding is T3• During time 

T3, the control unit determines the type of instruction. The flowchart of 

Fig. presents an initial configuration for the instruction cycle and shows 

how the control determines the instruction type after the decoding. 

Decoder output D, is equal to 1 if the operation code is equal to binary 1ll. 

If D7 =1, the instruction must be a register-reference or input-output type. 

If D7 = 0, the operation code must be one of the other seven values 000 

through 110, specifying a memory-reference instruction. Control then 

inspects the value of the first bit of the instruction, which is now available 

in flip-flop I. If D7 = 0 and I = 1, we If D7 = 0 and I = 1, we have a 



memory reference instruction with an indirect address. 

 

 



Input –output and Interrupt 

Instructions and data stored in memory must come from some input 

device. Computational results must be transmitted to the user through 

some output device.  

Input-Output Configuration 

The terminal sends and receives serial information. Each quantity of 

information has eight bits of an alphanumeric code. The serial information 

from the keyboard is shifted into the input register INPR. The serial 

information for the printer is stored in the output register OUTR. These 

two registers communicate with a communication interface serially and 

with the AC in parallel. The input-output configuration is shown in Fig. 

The transmitter interface receives serial information from the 

keyboard and transmits it to INPR. The receiver interface receives 

information from OUTR and sends it to the printer serially. 

The input register INPR consists of eight bits and holds an 

alphanumeric input information. The 1-bit input flag FGI is a control flip-

flop. The flag bit is set to 1 when new information is available in the input 

device and is cleared to 0 when the information is accepted by the 

computer. The flag is needed to synchronize the timing rate difference 

between the input device and the computer. The process of information 

transfer is as follows. Initially, the input flag FGI is cleared to 0. When a 

key is struck in the keyboard, an 8-bit alphanumeric code is shifted into 

INPR and the input flag FGI is set to 1. As long as the flag is set, the 

information in INPR cannot be changed by striking another key. The 

computer checks the flag bit; if it is 1, the information from INPR is 

transferred in parallel into AC and FGI is cleared to 0. Once the flag is 

cleared, new information can be shifted into INPR by striking another key. 

 

 



Input output configuration 

 

The output register OUTR works similarly but the direction of 

information flow is reversed. Initially, the output flag FGO is set to 1. The 

computer checks the flag bit; if it is 1, the information from AC is 

transferred in parallel to OUTR and FGO is cleared to 0. The output 

device accepts the coded information, prints the corresponding character, 

and when the operation is completed, it sets FGO to 1 . The computer does 

not load a new character into OUTR when FGO is 0 because this condition 

indicates that the output device is in the process of printing the character. 

 

 

 

 



Input-Output Instructions 

 

Program Interrupt 

The interrupt enable flip-flop IEN can be set and cleared with two 

instructions. When IEN is cleared to 0 (with the IOF instruction), the flags 

cannot interrupt the computer. When IEN is set to 1 (with the ION 

instruction), the computer can be interrupted. 

An interrupt flip-flop R is included in the computer. When R = 0, 

the computer goes through an instruction cycle. During the execute phase 

of the instruction cycle IEN is checked by the control. 

 

If it is 0, it indicates that the programmer does not want to use the 

interrupt, so control continues with the next instruction cycle. If IEN is 1, 

control checks the flag bits. If both flags are 0, it indicates that neither the 

input nor the output registers are ready for transfer of information. In this 

case, control continues with the next instruction cycle. If either flag is set 

to 1 while IEN = 1, flip-flop R is set to 1. At the end of the execute phase, 

control checks the value of R, and if it is equal to 1, it goes to an interrupt 

cycle instead of an instruction cycle. 

 

 



FLOW CHART FOR INTERRUPT CYCLE 

 

 

 



 

 

Micro programmed control 

Control Memory 

   The function of the control unit in a digital computer is 

to initiate sequences of micro operations. When the control signals are 

generated by hardware using conventional logic design techniques, the 

control unit is said to be hardwired.  

Microprogramming is a second alternative for designing the control unit 

of a digital computer. The control unit initiates a series of sequential steps 

of micro operations. During any given time, certain micro operations are 

to be initiated, while others remain idle. The control variables at any given 

time can be represented by a string of l's and O's called a control word. 

A control unit whose binary control variables are stored in memory is 

called a micro programmed control unit. Each word in control memory 

contains within it a micro instruction. The microinstruction specifies one 



or more micro operations for the system. A sequence of microinstructions 

constitutes a micro program.  

A memory that is part of a control unit is referred to as a control memory. 

A computer that employs a micro programmed control unit will have two 

separate memories: a main memory and a control memory. The main 

memory is available to the user for storing the programs. The contents of 

main memory may alter when the data are manipulated and every time 

that the program is changed. The user's program in main memory consists 

of machine instructions and data. In contrast, the control memory holds a 

fixed micro program that cannot be altered by the occasional user. The 

micro program consists of microinstructions that specify various internal 

control signals for execution of register micro operations. Each machine 

instruction initiates a series of microinstructions in control memory. 

These microinstructions generate the micro operations to fetch the 

instruction from main memory; to evaluate the effective address, to 

execute the operation specified by the instruction, and to return control to 

the fetch phase in order to repeat the cycle for the next instruction.  

The control memory is assumed to be a ROM, within which all control 

information is permanently stored. 

 

 

Micro programmed control organization 



The control memory address register specifies the address of 

the microinstruction, and the control data register holds the 

microinstruction read from memory. 

The microinstruction contains a control word that specifies 

one or more micro operations for the data processor. Once these 

operations are executed, the control must determine the next 

address. The location of the next microinstruction may be the one 

next in sequence, or it may be located somewhere else in the control 

memory. 

The next address generator is sometimes called a micro 

program sequencer, as it determines the address sequence that is 

read from control memory. 

The control data register holds the present microinstruction 

while the next address is computed and read from memory. The data 

register is sometimes called a pipeline register. 

The main advantage of the micro programmed control is the 

fact that once the hardware configuration is established, there should 

be no need for further hardware or wiring changes. If we want to 

establish a different control sequence for the system, all we need to 

do is specify a different set of microinstructions for control memory. 

The hardware configuration should not be changed for different 

operations; the only thing that must be changed is the micro program 

residing in control memory. 

Address Sequencing 

Microinstructions are stored in control memory in groups, with each 

group specifying a routine. Each computer instruction has its own micro 

program routine in control memory to generate the micro operations that 

execute the instruction. The hardware that controls the address sequencing 

of the control memory must be capable of sequencing the 



microinstructions within a routine and be able to branch from one routine 

to another. 

An initial address is loaded into the control address register when power 

is turned on in the computer. This address is usually the address of the 

first micro instruction that activates the instruction fetch routine. The fetch 

routine may be sequenced by incrementing the control address register. 

The control memory next must go through the routine that determines the 

effective address of the operand. 

Mapping 

The next step is to generate the micro operations that execute the 

instruction fetched from memory. The micro operation steps to be 

generated in processor registers depend on the operation code part of the 

instruction. Each instruction has its own micro program routine stored in 

a given location of control memory. The transformation from the 

instruction code bits to an address in control memory where the routine is 

located is referred to as a mapping process. A mapping procedure is a rule 

that transforms the instruction code into a control memory address. 

When the execution of the instruction is completed, control 

must return to the fetch routine. This is accomplished by executing 

an unconditional branch microinstruction to the first address of the 

fetch routine. In summary, the address sequencing capabilities 

required in a control memory are: 

1. Incrementing of the control address register. 

2. Unconditional branch or conditional branch, depending on 

status bit conditions. 

3. A mapping process from the bits of the instruction to an 

address for control memory. 

4. A facility for subroutine call and return. 



 

 

 

Selection of address for control memory  

 

 

 



Figure shows a block diagram of a control memory and the 

associated hardware needed for selecting the next microinstruction 

address. 

 The microinstruction in control memory contains a set of bits to 

initiate micro operations in computer registers and other bits to specify 

the method by which the next address is obtained. The diagram shows 

four different paths from which the control address register (CAR) 

receives the address. The incrementer increments the content of the 

control address register by one, to select the next microinstruction in 

sequence.  

Branching is achieved by specifying the branch address in one of the 

fields of the microinstruction. Conditional branching is obtained by using 

part of the microinstruction to select a specific status bit in order to 

determine its condition. An external address is transferred into control 

memory via a mapping logic circuit. The return address for a subroutine 

is stored in a special register whose value is then used when the micro 

program wishes to return from the subroutine. 

 

Conditional branching 

  The status conditions are special bits in the system that provide 

parameter information such as the carry-out of an adder, the sign bit of a 

number, the mode bits of an instruction, and input or output status 

conditions. Information in these bits can be tested and actions initiated 

based on their condition: whether their value is 1 or 0. The status bits, 

together with the field in the microinstruction that specifies a branch 

address, control the conditional branch decisions generated in the branch 

logic.  

 



The branch logic hardware may be implemented in a variety of 

ways. The simplest way is to test the specified condition and branch to the 

indicated address if the condition is met; otherwise, the address register is 

incremented. 

An unconditional branch microinstruction can be implemented by 

loading the branch address from control memory into the control address 

register. 

This can be accomplished by fixing the value of one status bit at the 

input of the multiplexer, so it is always equal to 1. A reference to this bit 

by the status bit select lines from control memory causes the branch 

address to be loaded into the control address register unconditionally. 

Mapping of Instruction 

A special type of branch exists when a microinstruction specifies a 

branch to the first word in control memory where a micro program routine 

for an instruction is located. The status bits for this type of branch are the 

bits in the operation code part of the instruction. 

 

 

Mapping of instruction code to micro instruction address 



For each operation code there exists a micro program routine 

in control memory that executes the instruction. One simple 

mapping process that converts the 4-bit operation code to a 7-bit 

address for control memory is shown in Fig. 

 This mapping consists of placing a 0 in the most significant 

bit of the address, transferring the four operation code bits, and 

clearing the two least significant bits of the control address register. 

This provides for each computer instruction a micro program routine 

with a capacity of four microinstructions. If the routine needs more 

than four microinstructions, it can use addresses 1000000 through 1 

1 1 1 1 1 1. If it uses fewer than four microinstructions, the unused 

memory locations would be available for other routines. 

Subroutines 

Subroutines are programs that are used by other routines to 

accomplish a particular task. A subroutine can be called from any 

point within the main body of the micro program. Frequently, many 

micro programs contain identical sections of code. 

Microinstructions can be saved by employing subroutines that use 

common sections of microcode. 

 For example, the sequence of micro operations needed to 

generate the effective address of the operand for an instruction is 

common to all memory reference instructions. This sequence could 

be a subroutine that is called from within many other routines to 

execute the effective address computation. 

Micro programs that use subroutines must have a provision for 

storing the return address during a subroutine call and restoring the 

address during a subroutine return. This may be accomplished by 

placing the incremented output from the control address register into 

a subroutine register and branching to the beginning of the 

subroutine. 



 The subroutine register can then become the source for 

transferring the address for the return to the main routine. The best 

way to structure a register file that stores addresses for subroutines 

is to organize the registers in a last-in, first-out (LIFO) stack. 

Design of Control Unit 

 The bits of the microinstruction are usually divided into fields, with 

each field defining a distinct, separate function. 

 The various fields encountered in instruction formats provide 

control bits to initiate micro operations in the system, special bits to 

specify the way that the next address is to be evaluated, and an address 

field for branching.  

The number of control bits that initiate micro operations can be 

reduced by grouping mutually exclusive variables into fields and 

encoding the k bits in each field to provide 2k micro operations. Each field 

requires a decoder to produce the corresponding control signals. This 

method reduces the size of the microinstruction bits but requires 

additional hardware external to the control memory. It also increases the 

delay time of the control signals because they must propagate through the 

decoding circuits. 

 The encoding of control bits was demonstrated in the programming 

example of the preceding section. The nine bits of the micro operation 

field are divided into three subfields of three bits each. The control 

memory output of each subfield must be decoded to provide the distinct 

micro operations. 

  The outputs of the decoders are connected to the appropriate inputs 

in the processor unit. 

 



 

Decoding of micro operation fields 



Figure shows the three decoders and some of the connections that 

must be made from their outputs. 

 Each of the three fields of the microinstruction presently available 

in the output of control memory are decoded with a 3 x 8 decoder to 

provide eight outputs.  

Micro program Sequencer 

The basic components of a micro programmed control unit are the 

control memory and the circuits that select the next address. The address 

selection part is called a micro program sequencer. 

 A micro program sequencer can be constructed with digital 

functions to suit a particular application. However, just as there are large 

ROM units available in integrated circuit packages, so are general-

purpose sequencers suited for the construction of micro program control 

units. To guarantee a wide range of acceptability, an integrated circuit 

sequencer must provide an internal organization that can be adapted to a 

wide range of applications. 

The purpose of a micro program sequencer is to present an address 

to the control memory so that a microinstruction may be read and 

executed. 

 The next-address logic of the sequencer determines the specific 

address source to be loaded into the control address register. The choice 

of the address source is guided by the next-address information bits that 

the sequencer receives from the present microinstruction.  

Commercial sequencers include within the unit an internal register 

stack used for temporary storage of addresses during micro program 

looping and subroutine calls. Some sequencers provide an output register 

which can function as the address register for the control memory. 

 



 

 

 

Micro program sequencer for a control memory  

 

 

 

 



The block diagram of the micro program sequencer is shown in Fig. 

The control memory is included in the diagram to show the interaction 

between the sequencer and the memory attached to it. There are two 

multiplexers in the circuit. The first multiplexer selects an address from 

one of four sources and routes it into a control address register CAR. The 

second multiplexer tests the value of a selected status bit and the result of 

the test is applied to an input logic circuit. 

The output from CAR provides the address for the control memory. 

The content of CAR is incremented and applied to one of the multiplexer 

inputs and to the subroutine register SBR. The other three inputs to 

multiplexer number 1 come from the address field of the present 

microinstruction, from the output of SBR, and from an external source 

that maps the instruction. Although the diagram shows a single subroutine 

register, a typical sequencer will have a register stack about four to eight 

levels deep. In this way, a number of subroutines can be active at the same 

time. A push and pop operation, in conjunction with a stack pointer, stores 

and retrieves the return address during the call and return 

microinstructions. 

The CD (condition) field of the microinstruction selects one of the 

status bits in the second multiplexer. If the bit selected is equal to 1, the T 

(test) variable is equal to 1; otherwise, it is equal to 0. The T value together 

with the two bits from the BR (branch) field go to an input logic circuit. 

The input logic in a particular sequencer will determine the type of 

operations that are available in the unit. Typical sequencer operations are: 

increment, branch or jump, call and return from subroutine, load an 

external address, push or pop the stack, and other address sequencing 

operations. With three inputs, the sequencer can provide up to eight 

address sequencing operations. Some commercial sequencers have three 

or four inputs in addition to the T input and thus provide a wider range of 

operations.  

 



Design of input logic 

 The input logic circuit in Fig. has three inputs, l0, l1, and T, and 

three outputs, S0, S1, and L. Variables So and S, select one of the source 

addresses for CAR. Variable L enables the load input in SBR. 

   The binary values of the two selection variables determine the path 

in the multiplexer. For example, with S1 S0 = 10, multiplexer input 

number 2 is selected and establishes a transfer path from SBR to CAR. 

Note that each of the four inputs as well as the outputs of MUX 1 contains 

a 7-bit address. 

The truth table for the input logic circuit is shown in Table. Inputs 

I1and I0 are Identical to the bit values in the BR field. The function listed 

in each entry was defined in Table. 

 The bit values for S1 and S0 are determined from the stated function 

and the path in the multiplexer that establishes the required transfer. The 

subroutine register is loaded with the incremented value of CAR during a 

call microinstruction (BR=01) provided that the status bit condition is 

satisfied (T = 1).  

The truth table can be used to obtain the simplified Boolean 

functions for the input logic circuit: 

S1 = I1 

S0= I1 I0 + I1’T 

L = Il’ I0 T 

 

 

 

 

 



Input logic table for micro program sequencer  

 

 

The circuit can be constructed with three AND gates, an OR gate, 

and an inverter. Note that the incrementer circuit in the sequencer of Fig. 

is not a counter constructed with flip-flops but rather a combinational 

circuit constructed with gates. A combinational circuit incrementer can be 

designed by cascading a series of half-adder circuits. The output carry 

from one stage must be applied to the input of the next stage. One input 

in the first least significant stage must be equal to 1 to provide the 

increment-by-one operation.  

 

 


