
Subject title: Allied 4: COMPUTER SYSTEM ARCHITECTURE

YEAR 2018-19 ONWARDS SEMESTER: IV

SUBJECT CODE: 18BIT44A

UNIT I: Data Representation: Fixed point representation-

floating point representation- alphanumeric code- register

transfer and micro operation: register transfer language – register

transfer – arithmetic micro operation – logic micro operation –

shift micro operation – arithmetic logic shift unit.

UNIT II: Basic computer organization and design: instruction

codes – timing and control – computer register – instruction cycle

– input – output and interrupt – Micro programmed control:

control memory – address sequencing- design of control unit.

UNIT III: Central processing unit: general register organization

– stack organization – instruction formats – addressing modes –

data transfer and manipulation – programmed control – reduced

instruction set computer – CISC.

UNIT IV: Computer arithmetic: addition and subtraction –

multiplication algorithm – division algorithm – input output

organization: peripheral devices- input output interface –

asynchronous data transfer – modes of transfer – direct memory

access – input output processor (IOP).

UNIT V: Memory organization: memory hierarchy – main

memory – auxiliary memory – associative memory – cache

memory – virtual memory.

Text book

1. M.Morris Mano, “Computer System Architecture”, third

edition, PHI, 2001.

Reference book

1. Hayes J.P, ”Computer architecture and organization”,

McGraw Hill,1998.

UNIT I: Data Representation: Fixed point representation-

floating point representation- alphanumeric code- register

transfer and micro operation: register transfer language – register

transfer – arithmetic micro operation – logic micro operation –

shift micro operation – arithmetic logic shift unit.

Prepared by Mrs. P.Sundari

DATA REPRESENTATION

Fixed-Point Representation

Positive integers, including zero, can be represented as unsigned

numbers. In ordinary arithmetic, a negative number is indicated by a

minus sign and a positive number by a plus sign. Because of hardware

limitations, computers must represent everything with 1's and 0's,

including the sign of a number.

The convention is to make the sign bit equal to 0 for positive and to

1 for negative. In addition to the sign, a number may have a binary (or

decimal) point. The position of the binary point is needed to represent

fractions, integers, or mixed integer-fraction numbers.

The representation of the binary point in a register is complicated by

the fact that it is characterized by a position in the register.

 There are two ways of specifying the position of the binary point in

a register: by giving it a fixed position or by employing a floating-point

representation.

The fixed-point method assumes that the binary point is always

fixed in one position. The two positions most widely used are

(1) a binary point in the extreme left of the register to make the

stored number a fraction, and

(2) a binary point in the extreme right of the register to make the

stored number an integer.

The floating-point representation uses a second register to store a

number that designates the position of the decimal point in the first

register.

Signed numbers
Integer Representation

When an integer binary number is positive, the sign is represented

by 0 and the magnitude by a positive binary number. When the number is

negative, the sign is represented by 1 but the rest of the number may be

represented in one of three possible ways:

1. Signed-magnitude representation

2. Signed-1' s complement representation

3. Signed 2' s complement representation

The signed-magnitude representation of a negative number consists

of the magnitude and a negative sign. In the other two representations, the

negative number is represented in either the 1's or 2's complement of its

positive value.

As an example, consider the signed number 14 stored in an 8-bit

register.

+ 14 is represented by a sign bit of 0 in the leftmost position

followed by the binary equivalent of 14: 00001110. Note that each of the

eight bits of the register must have a value and therefore 0's must be

inserted in the most significant positions following the sign bit. Although

there is only one way to represent + 14, there are three different ways to

represent - 14 with eight bits.

In signed-magnitude representation 1 0001110

In signed-1's complement representation 1 11 10001

In signed-2's complement representation 1 11 10010

The signed-magnitude representation of - 14 is obtained from + 14 by

complementing only the sign bit. The signed-1's complement

representation of – 14 is obtained by complementing all the bits of + 14,

including the sign bit.

The signed-2's complement representation is obtained by taking the

2's complement of the positive number, including its sign bit.

Therefore, the signed-complement is normally used. The 1's complement

imposes difficulties because it has two representations of 0 (+ 0 and - 0).

It is seldom used for arithmetic operations except in some older

computers. The 1's complement is useful as a logical operation since the

change of 1 to 0 or 0 to 1 is equivalent to a logical

complement operation.

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the

rules of ordinary arithmetic.

 If the signs are the same, we add the two magnitudes and give the

sum the common sign.

If the signs are different, we subtract the smaller magnitude from the

larger and give the result the sign of the larger magnitude.

For example, (+ 25) + (- 37) = - (37 - 25) = - 12 and is done by

subtracting the smaller magnitude 25 from the larger magnitude 37 and

using the sign of 37 for the sign of the result. This is a process that requires

the comparison of the signs and the magnitudes and then performing

either addition or subtraction.

Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers

are in 2' s complement form is very simple and can be stated as follows:

Take the 2's complement of the subtrahend (including the sign bit)

and add it to the minuend (including the sign bit). A carry out of the sign

bit position is discarded.

This procedure stems from the fact that a subtraction operation can

be changed to an addition operation if the sign of the subtrahend is

changed.

Overflow

When two numbers of n digits each are added and the sum occupies

n + 1 digits, we say that an overflow occurred.

The detection of an overflow after the addition of two binary

numbers depends on whether the numbers are considered to be signed or

unsigned.

When two unsigned numbers are added, an overflow is detected

from the end carry out of the most significant position. In the case of

signed numbers, the leftmost bit always represents the sign, and negative

numbers are in 2's complement form.

When two signed numbers are added, the sign bit is treated as part

of the number and the end carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive

and the other is negative, since adding a positive number to a negative

number produces a result that is smaller than the larger of the two original

numbers.

An overflow may occur if the two numbers added are both positive

or both negative.

Overflow detection

 An overflow condition can be detected by observing the carry into

the sign bit position and the carry out of the sign bit position. If these two

carries are not equal, an overflow condition is produced. If the two carries

are applied to an exclusive-OR gate, an overflow will be detected when

the output of the gate is equal to 1 .

Decimal Fixed-Point Representation

 The representation of decimal numbers in registers is a function of

the binary code used to represent a decimal digit. A 4-bit decimal code

requires four flip-flops for each decimal digit.

The representation of 4385 in BCD requires 16 flip-flops, four flip-flops

for each digit. The number will be represented in a register with I6 flip-

flops as follows:

0100 001 1 1000 0101

Floating-Point Representation

The floating-point representation of a number has two parts.

The first part represents a signed, fixed-point number called the

mantissa.

The second part designates the position of the decimal (or binary)

point and is called the exponent.

 The fixed-point mantissa may be a fraction or an integer. For

example,

The decimal number + 6132.789 is represented in floating-point

with a fraction and an exponent as follows:

Fraction + 0 .6132789

Exponent + 04

The value of the exponent indicates that the actual position of the

decimal point is four positions to the right of the indicated decimal point

in the fraction. This representation is equivalent to the scientific notation

+0. 6132789 X 10+4.

Floating-point is always interpreted to represent a number in the

following form:

m x re

Only the mantissa m and the exponent e are physically represented

in the register (including their signs). The radix r and the radix-point

position of the mantissa are always assumed. The circuits that manipulate

the floating-point numbers in registers conform with these two

assumptions in order to provide the correct computational results.

A floating-point binary number is represented in a similar manner

except that it uses base 2 for the exponent. For example, the binary

number + 1001 . 1 1 is represented with a n 8-bit fraction and 6-bit

exponent a s follows:

Fraction 01001110

Exponent 000100

The fraction has a 0 in the leftmost position to denote positive. The

binary point of the fraction follows the sign bit but is not shown in the

register. The exponent has the equivalent binary number +4.

 The floating-point number is equivalent to

m x 2e = + (. 1001 110)2 x 2+4•

Alphanumeric Codes

The ASCII (American Standard Code for Information Interchange)

code is the standard code commonly used for the transmission of binary

information.

 Each character is represented by a 7-bit code and usually an eighth

bit is inserted for parity.

The code consists of 128 characters. Ninety-five characters

represent graphic symbols that include upper- and lowercase letters,

numerals zero to nine, punctuation marks, and special symbols. Twenty-

three characters represent format effectors, which are functional

characters for controlling the layout of printing or display devices such as

carriage return, line feed, horizontal tabulation, and back space.

The other 10 characters are used to direct the data communication

flow and report its status.

ASCII table

EBCDIC
Another alphanumeric (sometimes called alphanumeric) code used

in IBM equipment is the EBCDIC (Extended BCD Interchange Code). It

uses eight bits for each character (and a ninth bit for parity). EBCDIC has

the same character symbols as ASCII but the bit assignment to characters

is different. When alphanumeric characters are used internally in a

computer for data processing (not for transmission purposes) it is more

convenient to use a 6-bit code to represent 64 characters.

A 6-bit code can specify the 26 uppercase letters of the alphabet,

numerals zero to nine, and up to 28 special characters. This set of

characters is usually sufficient for data-processing purposes. Using fewer

bits to code characters has the advantage of reducing the memory space

needed to store large quantities of alphanumeric data.

REGISTER TRANSFER AND MICRO OPERATION

Register Transfer Language

Digital modules are best defined by the registers they contain and

the operations that are performed on the data stored in them. The

operations executed on data stored in registers are called micro operations.

The result of the operation may replace the previous binary

information of a register or may be transferred to another register.

Examples of micro operations are shift, count, clear, and load.

The internal hardware organization of a digital computer is best

defined by specifying:

1. The set of registers it contains and their function.

2. The sequence of micro operations performed on the binary

information stored in the registers.

3. The control that initiates the sequence of micro operations.

Register transfer language

The symbolic notation used to describe the micro operation transfers

among registers is called a register transfer language.

Register Transfer
Computer registers are designated by capital letters (sometimes

followed by numerals) to denote the function of the register. For example,

the register that holds an address for the memory unit is usually called a

memory address register and is designated by the name MAR.

Other designations for registers are PC (for program counter), IR

(for instruction register, and R1 (for processor register).

The individual flip-flops in an n-bit register are numbered in

sequence from 0 through n - 1, starting from 0 in the rightmost position

and increasing the numbers toward the left.

 Information transfer from one register to another is designated in

symbolic form by means of a replacement operator. The statement

R2 R1

denotes a transfer of the content of register R1 into register R2.

By definition, the content of the source register R1 does not change

after the transfer.

 If (P = 1) then (R2 R1)

where P is a control signal generated in the control section. It is sometimes

convenient to separate the control variables from the register transfer

operation by specifying a control function.

 A control function is a Boolean variable that is equal to 1 or 0. The

control function is included in the statement as follows:

P: R2 R1

The control condition is terminated with a colon.

Basic symbols for register transfer

Arithmetic Micro operations

Binary Adder-Subtractor

The subtraction of binary numbers can be done most conveniently by

means of complements.

Remember that the subtraction A – B can be done by taking the 2's

complement of B and adding it to A.

The 2's complement can be obtained by taking the 1's complement

and adding one to the least significant pair of bits.

 The 1's complement can be implemented with inverters and a one

can be added to the sum through the input carry.

The addition and subtraction operations can be combined into one

common circuit by including an exclusive-OR gate with each full-adder.

Binary Adder-Subtractor

Arithmetic Circuit

The arithmetic micro operations listed in Table can be implemented

in one composite arithmetic circuit. The basic component of an arithmetic

circuit is the parallel adder. By controlling the data inputs to the adder, it

is possible to obtain different types of arithmetic operations.

The diagram of a 4-bit arithmetic circuit is shown in Fig. It has four

full-adder circuits that constitute the 4-bit adder and four multiplexers for

choosing different operations. There are two 4-bit inputs A and B and a

4-bit output D. The four inputs from A go directly to the X inputs of the

binary adder. Each of the four inputs from B are connected to the data

inputs of the multiplexers. The multiplexers data inputs also receive the

complement of B. The other two data inputs are connected to logic-0 and

logic-1 The four multiplexers are controlled by two selection inputs, S1

and S0• The input carry Cin goes to the carry input of the FA in the least

significant position. The other carries are connected from one stage to the

next.

4 bit arithmetic circuit

The output of the binary adder is calculated from the following arithmetic

sum:

D = A + Y + Cin

where A is the 4-bit binary number at the X inputs and Y is the 4-bit binary

number at the Y inputs of the binary adder. Cin is the input carry, which

can be equal to 0 or 1. Note that the symbol + in the equation above

denotes an arithmetic plus. By controlling the value of Y with the two

selection inputs S1 and So and making Cin equal to 0 or 1, it is possible

to generate the eight arithmetic micro operations listed in Table.

Arithmetic circuit function table

Logic Micro operations

Logic micro operations specify binary operations for strings of bits

stored in registers.

For example, the exclusive-OR micro operation with the contents of

two registers R 1 and R2 is symbolized by the statement

P: R1  R1 xor R2

Special symbols

 The symbol V will be used to denote an OR micro operation.

List of Logic Micro operations

There are 16 different logic operations that can be performed with

two binary variables.

Truth table for 16 functions of 2 variables

In this table, each of the 16 columns F0 through F15 represents a

truth table of one possible Boolean function for the two variables x and y.

Note that the functions are determined from the 16 binary

combinations that can be assigned to F .

The 16 Boolean functions of two variables

Hardware Implementation

The hardware implementation of logic micro operations requires

that logic gates be inserted for each bit or pair of bits in the registers to

perform the required logic function. Although there are 16 logic micro

operations, most computers use only four-AND, OR, XOR (exclusive-

OR), and complement from which all others can be derived.

One stage of logic circuit

Shift Micro operations
Shift micro operations are used for serial transfer of data. They are

also used in conjunction with arithmetic, logic, and other data-processing

operations.

The contents of a register can be shifted to the left or the right. At

the same time that the bits are shifted, the first flip-flop receives its binary

information from the serial input.

 During a shift-left operation the serial input transfers a bit into the

rightmost position. During a shift-right operation the serial input transfers

a bit into the leftmost position. The information transferred through the

serial input determines the type of shift.

There are three types of shifts:

1. logical,

2. circular, and

3. arithmetic.

Logical shift
A logical shift is one that transfers 0 through the serial input. We

will adopt the symbols shl and shr for logical shift-left and shift-right

micro operations.

 For example:

R1  shl R1

R2  shr R2

are two micro operations that specify a 1-bit shift to the left of the

content of register R 1 and a 1-bit shift to the right of the content of

register R2. The register symbol must be the same on both sides of

the arrow. The bit transferred to the end position through the serial

input is assumed to be 0 during a logical shift.

Circular shift
The circular shift (also known as a rotate operation) circulates the

bits of the register around the two ends without loss of information. This

is accomplished by connecting the serial output of the shift register to its

serial input.

We will use the symbols cil and cir for the circular shift left and

right, respectively.

The symbolic notation for the shift micro operations is shown in

Table.

Shift micro operations

Arithmetic shift

An arithmetic shift is a micro operation that shifts a signed binary

number to the left or right. An arithmetic shift-left multiplies a signed

binary number by 2. An arithmetic shift-right divides the number by 2.

Arithmetic shifts must leave the sign bit unchanged because the sign

of the number remains the same when it is multiplied or divided by 2.

Hardware Implementation
A combinational circuit shifter can be constructed with multiplexers

as shown in Fig. The 4-bit shifter has four data inputs, A0 through A3 and

four data outputs, H0 through H3• There are two serial inputs, one for

shift left (IL) and the other for shift right (h).

 When the selection input S = 0, the input data are shifted right

(down in the diagram). When S = 1, the input data are shifted left (up in

the diagram).

The function table in Fig. shows which input goes to each output

after the shift. A shifter with n data inputs and outputs requires n

multiplexers. The two serial inputs can be controlled by another

multiplexer to provide the three possible types of shifts.

4 bit combinational circuit shifter

Arithmetic Logic Shift Unit

 Instead of having individual registers performing the micro

operations directly, computer systems employ a number of storage

registers connected to a common operational unit called an arithmetic

logic unit, abbreviated ALU.

The ALU is a combinational circuit so that the entire register transfer

operation from the source registers through the ALU and into the

destination register can be performed during one clock pulse period.

One stage of an arithmetic logic shift unit is shown in Fig.

Inputs Ai and Bi are applied to both the arithmetic and logic units.

A particular micro operation is selected with inputs S1 and S0•

 A 4 x 1 multiplexer at the output chooses between an arithmetic

output in E; and a logic output in H;. The data in the multiplexer are

selected with inputs S3 and S2• The other two data inputs to the

multiplexer receive inputs Ai+ 1 for the shift-right operation and Ai + 1

for the shift-left operation.

Note that the diagram shows just one typical stage. The circuit of

Fig. must be repeated n times for an n-bit ALU. The output carry Ci+ 1 of

a given arithmetic stage must be connected to the input carry Ci of the

next stage in sequence. The input carry to the first stage is the input carry

Cin which provides a selection variable for the arithmetic operations.

The circuit whose one stage is specified in Fig provides eight

arithmetic operation, four logic operations, and two shift operations. Each

operation is selected with the five variables S3, S2, S1, S0, and Cin,. The

input carry Cin., is used for selecting an arithmetic operation only.

Function table for arithmetic logic shift unit

Table lists the 14 operations of the ALU. The first eight are

arithmetic operations and are selected with S3S2 = 00.

The next four are logic operations and are selected with S3S2 = 01.

The input carry has no effect during the logic operations and is marked

with don't-care x‘s. The last two operations are shift operations and are

selected with S3S2 = 10 and 11. The other three selection inputs have no

effect on the shift.

