
UNIT III-VISUAL BASIC PROGRAMMING-18BIT43C

UNIT III: Timer Control, Scroll Bar, Message Box (), Input Box (), Functions,
MDI Forms, Menus and Dialog Boxes: Building Drop – Down Menus, Sub
Menus - Pop - Up Menus –Dialog Boxes – Debugging and Executing A Projects
–Error Handling –Convert –VB Project To Exe File – Procedures –Scope-
Optional Arguments.

Prepared by S.Radha Priya 1

TIMER CONTROL

 Timed events, such as a digital clock or a stopwatch, make use of the
timer control.

 The timer is placed in the Form Design Window at design time

 Its location and appearance are unimportant.

 primary importance is the Interval property. This property can be assigned
an integer value ranging from 0 to 65,535. A zero value disables the timer.
Positive values represent the number of milliseconds between timed
events. Thus, a value of 1 represents an interval of one millisecond (one
thousandth of a second); 1000 represents a one-second interval; and
60,000 represents one-minute interval.

 The Enabled property must be assigned a value of True in order to activate
the timer.

Example

Prepared by S.Radha Priya 2

Prepared by S.Radha Priya 3

Form design

Prepared by S.Radha Priya 4

coding

Prepared by S.Radha Priya 5

HORIZONTAL SCROLL BAR

Scroll Bar

 Scroll bars can be used to view a large document by moving the visible
window (scrolling) vertically or horizontally. They can also be used to
select a particular value within a specified range, or to select a specific
item from a list.

 important properties associated with scroll bars are Min, Max, SmallChange
and LargeChange. Min and Max represent integer values corresponding to
the minimum and maximum thumb locations within the slide area. The
defaults are Min = 0 and Max = 32767.

 SmallChange and LargeChange indicate the size of the incremental
movements when you click on the arrow buttons or the empty slide area,
respectively.

Prepared by S.Radha Priya 6

MENUS AND DIALOGUE BOX

BUILDING DROP-DOWN MENUS

• Drop-down menus represent another important class of components in
the user interface. To create a drop-down menu, click on the Menu Editor
button in the Toolbar or select Menu Editor from the Tools menu. Note
that the Menu Editor is not accessible from the Visual Basic Toolbox.

The check boxes labeled Enabled and Visible should be selected, as shown in the
figure.

Prepared by S.Radha Priya 7

Prepared by S.Radha Priya 8

Enter identifiers for the Caption and Name for each menu item. (The Caption
is actually the screen name of the item, as it appears in the Menu Bar or
within the drop-down menu. The Name is used only in Visual Basic code – it is
not displayed when the application is running.) The Caption will appear in the
large area at the bottom of the Menu Editor as well as within the Caption
field. You may either press the Enter key or click on the Next button after the
information has been entered for each menu item.

All of the menu components must be entered, in the following order:

1. The first menu heading (i.e., the screen name for the first menu, which
appears in the menu bar).

2. The corresponding menu items for the first menu.

3. The second menu heading.

4. The corresponding menu items for the second menu.

The menu headings must be flush left within each line. Items that appear
within each menu must be indented one level, as indicated by four ellipses
preceding each item. The indentation is accomplished using the right-arrow
button. Click once to indent one level (four ellipses). The opposite action, i.e.,
moving an indented item to the left, is accomplished with the left-arrow
button.

Prepared by S.Radha Priya 9

s

The relative ordering of each menu component can be altered using the up-
and down-arrow buttons.

Prepared by S.Radha Priya 10

Example

Prepared by S.Radha Priya 11

ACCESSING A MENU FROM THE KEYBOARD
A keyboard access character can be defined for each menu item. This allows the user
to view a drop-down menu by pressing Alt and the access key for the menu heading,
rather than clicking on the menu heading. In addition, once the drop-down menu is
shown, the user may select a menu item by pressing its access key (without Alt) rather
than clicking on the menu item. To define an access character, use the Menu Editor to
place an ampersand (&) in front of the desired character within each menu item
caption (i.e., within each screen name). The access character will then be underlined
when the associated menu item is shown. Note that a drop-down menu must actually
be visible on the screen for its access characters to be active. Prepared by S.Radha Priya 12

In addition to access characters, we can also define keyboard shortcuts for
some or all of the menu items within a drop-down menu. A keyboard shortcut
is typically a function key, or a Ctrl-key combination or a Shift key
combination. Keyboard shortcuts are selected directly from the Shortcut field
within the Menu Editor.

The menu items have been modified to add access characters, as shown
below (note the added ampersands).

&Continents

....&Africa

....An&tarctica

....As&ia

....A&ustralia

....&Europe

....&North America

....&South America

Prepared by S.Radha Priya 13

the menu editor, with
Arctic as the active menu
item listed under Oceans.
Note that the key
combination Ctrl+A has
been selected as the
keyboard shortcut for this
menu item.

Prepared by S.Radha Priya 14

Thus, the area of the Arctic ocean can be displayed by clicking on Oceans and
then Arctic, by pressing Alt-O followed by A, or by pressing Ctrl-A directly
from the main window.

Prepared by S.Radha Priya 15

MENU ENHANCEMENTS

• The menu editor includes other features that permit various menu item
enhancements. For example, a checkmark can be assigned to a menu
item, indicating the on-off status of the menu item. Selecting the box
labeled Checked will cause the menu item to be checked initially.

• Its status can then be changed (i.e., the check mark can be removed and
later displayed) under program control when the program is executing.

SUBMENUS

 A menu item may have a submenu associated with it. Placing the mouse
over the menu item (or pressing the access character, keyboard shortcut,
etc.) will cause the corresponding submenu to be displayed adjacent to
the parent menu item.

 The use of submenus allows menu selections to be arranged in a logical,
hierarchical manner.

Prepared by S.Radha Priya 16

• The below given menu will contain three menu items, Continents, Oceans
and Seas. Each of these menu items will have its own submenu.

Prepared by S.Radha Priya 17

The list of menu items within the Menu Editor, adding the overall heading

Geography at the top of the list, and then indenting all of the remaining menu
items by one level. The modified list will appear as follows:

&Geography

....&Continents

........&Africa

........An&tarctica

........As&ia

........A&ustralia

........&Europe

........&North America

........&South America

....&Oceans

........&Arctic

........A&tlantic

........&Indian

........&Pacific

Prepared by S.Radha Priya 18

POP-UP MENUS

 A pop-up menu can appear anywhere within a form, usually in response to
clicking the right mouse button.

 the upper left corner of the pop-up menu appears at the location of the
mouse click, though the position of the pop-up menu can be altered by
specifying some additional parameters.

 A pop-up menu is created via the Menu Editor in the same manner as a
drop-down menu, except that the main menu item is not visible (i.e., the
Visible feature is unchecked).

 An event procedure must then be entered into the Code Editor so that the
pop-up menu appears in response to the mouse click.

 All of the components of this event procedure have a predefined meaning
and must be entered as shown. (The undefined underscore, which
represents the caption for the first pop-down menu item, is supplied by
the programmer.) Note that the first and last lines are generated
automatically by the Code Editor, provided the correct object name (Form)
is selected in the upper left portion of the Code Editor, and the correct
action (MouseDown) is selected in the upper right.

Prepared by S.Radha Priya 19

 The action specified by each pop-up menu item must be entered into the
Code Editor as a separate event procedure, as before. Thus, one event
procedure is required to display the pop-up menu, and an additional event
procedure is required for each of the various actions taken in response to
the pop-up menu selections.

Prepared by S.Radha Priya 20

Figure shows the Menu Editor, with the entries required to change the color
within the circle. Notice the caption (Colors) and the name (mnuColor)
assigned to the first menu item. Also, note the use of separators between the
menu items.

Prepared by S.Radha Priya 21

In order to display the menu and bring about the desired color changes in
response to the menu selections, we must add the following event procedures via
the Code Editor Window.

Example coding

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, X As Single, Y
As Single)

 If Button = vbRightButton Then

 PopupMenu mnuColor

 End If

 End Sub

 Private Sub RedColor_Click()

 Shape1.FillColor = vbRed

 End Sub

 Private Sub GreenColor_Click()

 Shape1.FillColor = vbGreen

 End Sub

 Private Sub BlueColor_Click()

 Shape1.FillColor = vbBlue

 End Sub
Prepared by S.Radha Priya 22

Clicking the right mouse button then causes the pop-up menu to appear,

Prepared by S.Radha Priya 23

DIALOG BOXES

A dialog box is used to exchange information between the program and the user.
Dialog boxes typically contain common controls (e.g., labels, text boxes, option
buttons, check boxes, and command buttons) to enter or display information.

A “secondary” form (e.g., a dialog box) can be added to an active project via the
Load command; i.e.,

 Load form

For example, the command

 Load Form2

will cause the form named Form2 to be loaded into the currently active project.

Similarly, a form can be removed from an active project, thus freeing up memory,
via the Unload command;

i.e.,

 Unload form

For example,

 Unload Form2

Thus, the form named Form2 will be unloaded (removed) from the currently
active project. As a result, references to the object named Form2 will no longer be
recognized within the currently active project.

Prepared by S.Radha Priya 24

Loading a form into an active project does not in itself cause the form to be
visible. To make the form visible, we use the Show method; i.e.,

 form.Show

(Recall that a method is similar to a property. Whereas properties represent
values associated with objects,however, methods carry out actions on
objects.) For example,

 Form2.Show

This causes the form named Form2 to become visible within the currently
active project. Moreover, Form2 will be the currently active form, and it will
be displayed on top of any other visible forms. If the form.Show method is
followed by a 1; e.g.,

 Form2.Show 1

the new form will be displayed as a modal form. That is, the form will remain
in place, preventing the activation of any other forms, until the user disposes
of the form by accepting it (e.g., by clicking OK), or rejecting it (e.g., by
clicking Cancel).

Prepared by S.Radha Priya 25

The Hide method is directly analogous but opposite to the Show method.
Thus, the command

 Form2.Hide

causes Form2 to no longer be visible within the currently active project. This
command does not cause Form2 to be unloaded from the project. Recall that
we refer to a property (or method) associated with an object in a single-form
project as

 object name.property

For example,

 Text1.Text

When working with multiform projects, however, it is often necessary to refer
to a property (or method) of an object in a different form. To do so, we
precede the object name with the form name; i.e.,

 form name.object name.property

For example,

 Form2.Text1.Text

Of course, the placement of these references is determined by the program
logic.

Prepared by S.Radha Priya 26

THE MsgBox FUNCTION

• MsgBox function is actually a type of dialog box which displays a given
output string and one or more command buttons (e.g., OK), and returns a
positive integer whose value depends on the action taken by the user.

the function reference may be written as

 integer variable = MsgBox(string, integer, title)

The value of the integer argument (default 0) defines the command buttons
that appear within the dialog box. Also, title represents a string that will
appear in the message box’s title bar. It’s default value (if not included as

an explicit argument) will be the project name.

Prepared by S.Radha Priya 27

The value returned by the MsgBox function will depend upon the particular
command button selected by the user during program execution. The
possible values are summarized below.

Prepared by S.Radha Priya 28

THE InputBox FUNCTION

• The InputBox function is will automatically include a string prompting the
user for input, and a text box where the user can enter an input string. It
will also include two command buttons – OK and Cancel. Figure shows a
typical input box with a prompt and a blank text box, awaiting user input.

In general terms, the function reference may be written as

string variable = Input Box(prompt, title, default)

Prepared by S.Radha Priya 29

 The first argument (prompt) represents a string that appears within the dialog
box as a prompt for input.

 The second argument (title) represents a string that will appear in the title bar.
It’s default value (if not included as an explicit argument) will be the project
name.

 The last argument (default) represents a string appearing appearing

 initially in the input box’s text box.

Debugging and executing a project

syntactic errors

syntactic errors (also called compilation errors) occur when Visual Basic
commands are written improperly.

Text6.Text = 0.01 * Val(Text1.Text) + 0.05 * Val(Text2.Text) + 0.1 * Val(Text3.Text) +

 0.25 * Val(Text4.Text) + 0.5 * Val(Text5.Text)

Now suppose that the right parenthesis at the end of the command had
inadvertently been omitted; i.e.,

Text6.Text = 0.01 * Val(Text1.Text) + 0.05 * Val(Text2.Text) + 0.1 * Val(Text3.Text) +

 0.25 * Val(Text4.Text) + 0.5 * Val(Text5.Text

Prepared by S.Radha Priya 30

An attempt to run this program will result in a syntactic error message, as
shown in figure:

LOGICAL ERRORS

Many execution errors are caused by faulty program logic (e.g., dividing by
zero or attempting to take the square root of a negative number). A logical
error results in a system crash, a message is produced indicating the reason
for the crash.

Prepared by S.Radha Priya 31

Visual Basic allows you to access its debugging features three different ways:
via the Debug menu on the main menu bar, through certain function keys, or
through the Debug toolbar, as illustrated in Figure (TheDebug toolbar can be
displayed by selecting Toolbars/Debug from the View menu.)

Prepared by S.Radha Priya 32

SETTING BREAKPOINTS

There are several different ways to set a breakpoint. The first step is to
examine the program listing within the Code Editor Window and identify the
statement where the break point will be located. Then select the statement,
or simply click anywhere within the statement, and set the breakpoint in any
of the following ways:

 1. Select Toggle Breakpoint from the Debug menu.

 2. Click on the Toggle Breakpoint button within the Debug toolbar.

 3. On an Intel-based computer, press function key F9.

Once the breakpoint has been set, the statement will be clearly highlighted,
as shown in Figure. Observe the dark circle to the left of the selected
statement, in addition to the heavy highlighting.

Note that the breakpoint is set ahead of the selected statement. That is, the
break in the program execution will occur just before the selected statement
is executed. Also, note that the breakpoint is removed the same way it is set;
i.e., by selecting Toggle Breakpoint from the Debug menu, by clicking on the
Toggle Breakpoint button on the Debug toolbar, or by pressing function key
F9. Thus, the breakpoint feature is referred to as a toggle.

Prepared by S.Radha Priya 33

If a program contains several different breakpoints, it may be convenient to
remove all of them at once. To do so, simply select Clear All Breakpoints from
the Debug menu, of press function keys Ctrl-Shift-F9 simultaneously.

Prepared by S.Radha Priya 34

USER-INDUCED ERRORS
User-induced errors are the result of mistakes made by the user when the program is
executing (e.g., entering numbers that are out of range, or entering non numerical
characters when a numerical value is expected). Errors of this type can usually be
anticipated and “trapped” by one or more If-Then-Else blocks. However, it may be
more convenient to use an error handler routine to trap the error and then take
appropriate remedial action.

Procedures

 A procedure (including an event procedure) is a self-contained group of Visual
Basic commands that can be accessed from a remote location within a Visual
Basic program.

 Visual Basic supports three types of procedures – Sub procedures (sometimes
referred to simply as subroutines), Function procedures (also called functions),
and Property procedures.

SUB PROCEDURES (SUBROUTINES)

In its simplest form, a sub procedure is written as

Sub procedure name (arguments)

.

statements

.

End Sub
Prepared by S.Radha Priya 35

The procedure name must follow the same naming convention used with
variables.

The list of arguments is optional. Arguments represent information that is
transferred into the procedure from the calling statement. Each argument is
written as a variable declaration; i.e.,

• argument name As data type

The data type can be omitted if the argument is a variant. Multiple arguments
must be separated by commas. If arguments are not present, an empty pair
of parentheses must appear in the Sub statement.

• A sub procedure can be accessed from elsewhere within the module via
the Call statement. The Call statement is written

• Call procedure name (arguments)

The list of arguments in the Call statement must agree with the argument list
in the procedure definition. The arguments must agree in number, in order,
and in data type. However, the respective names may be different.

Prepared by S.Radha Priya 36

The required procedures (a sub procedure and two event procedures) are
shown below.

Sub Smallest(a, b)

 Dim Min

 If (a < b) Then

 Min = a

 MsgBox "a is smaller (a = " & Str(Min) & ")"

 ElseIf (a > b) Then

 Min = b

 MsgBox "b is smaller (b = " & Str(Min) & ")"

 Else

 Min = a

 MsgBox "Both values are equal (a, b = " & Str(Min) & ")"

 End If

End Sub

Prepared by S.Radha Priya 37

Private Sub Command1_Click()

 Dim x As Variant, y As Variant

 x = Val(Text1.Text)

 y = Val(Text2.Text)

 Call Smallest(x, y)

End Sub

Private Sub Command2_Click()

 End

End Sub

When passing an argument by reference, the argument name may be
preceded by the reserved word ByRef within the procedure definition; i.e.,

• ByRef argument name As data type

In order to pass an argument by value, the argument name within the
procedure must be preceded by the reserved word ByVal; i.e.,

• ByVal argument name As data type

Prepared by S.Radha Priya 38

Here are the corresponding procedures.

Sub Smallest(ByVal a, ByVal b, ByRef c)

 If (a < b) Then

 c = a

 Else

 c = b

 End If

End Sub

Private Sub Command1_Click()

Dim x, y, z, min

 x = Val(Text1.Text)

 y = Val(Text2.Text)

 z = Val(Text3.Text)

 Call Smallest(x, y, min)

 Call Smallest(z, min, min)

 Text4.Text = Str(min)

End Sub

Prepared by S.Radha Priya 39

Private Sub Command2_Click()

 Text1.Text = ""

 Text2.Text = ""

 Text3.Text = ""

 Text4.Text = ""

End Sub

Private Sub Command3_Click()

 End

End Sub

EVENT PROCEDURES

Event procedures should be quite familiar by now, as we have been using
them throughout this book. An event procedure is a special type of sub
procedure. It is accessed by some specific action, such as clicking on an

object, rather than by the Call statement or by referring to the procedure
name.

Prepared by S.Radha Priya 40

