
SOFTWARE ENGINEERING

UNIT IV: Software Design: Fundamental Design Concepts – Modules and
Modularization Criteria – Design Notations – Design Techniques – Detailed
Design Considerations – Real-Time and Distributed System Design – Test Plans
– Milestones, Walkthroughs, and Inspections - Design Guidelines.

Prepared by S.Radha Priya 1

SOFTWARE DESIGN

Software design – 3 distinct types of activities

 a. External Design

 b. Architectural Design

 c. Detailed Design

The External design and architectural design typically span the period from
software requirements review to preliminary design review. Detailed design
spans the period from preliminary design review to critical design review. The
situations are illustrated as below:

 Phases Analysis Design Implementation

Activities Planning
requirement
definition

External
Architecture
Detailed

Coding Debugging
Testing

 SRR PDR CDR

SRR- Software Requirement review
PDR-Preliminary design review
CDR- Critical Design review
 Prepared by S.Radha Priya 2

Fundamental Concepts of Software Design

1. Abstraction

Abstraction allows us to organize and channel our thought processes by
postponing structural considerations and detailed algorithmic considerations,
data stores.

Ex: FIFO- Queue(front, rear)

 LIFO- Stack(push, pop, Top, new, empty)

3 widely used abstraction mechanisms in software design are

 a. functional abstraction(parameterized subroutine)

 b. data abstraction.

 c. control abstraction.

 The above mechanisms control the complexity of design process.

Abstract

Concrete

proceed

Prepared by S.Radha Priya 3

 Functional abstraction can be generalized to the collection of
subprograms, called ‘groups’ (ex: packages in Ada, Clusters in CLU)

 In a group certain routines have visible property, which allows them to be
used by other groups.

 Hidden routines can be used only within the containing group.

 Abstract data type are representation details of the data items and
implementation details of the functions that manipulate the details of the
functions that manipulate the data items are hidden within the group that
implements the abstract type.

 Control abstraction is used to state a desired effect without stating the
exact mechanism of control.

 ex: IF statements and while statements

 ex: for all I in S sort files I.

2. Information Hiding

 Information hiding is a fundamental design concept for software.

Prepared by S.Radha Priya 4

When software system is designed using information hiding approach, each
module in the system hides the internal details of its processing activities and
modules communicate only through well-defined interfaces.

 According to parnas, design should begin with a list of difficult design
each module is designed to hide such a decision from other modules.

 ex: format of control blocks(queues) character codes ordering of
character sets.

3.Structure

 The use of structure permits decomposition of large system into
smaller, more manageable units with well-defined relationships to other units
in the system.

 The most general form of system structure is a network. It is a
directed graph consisting of nodes and arcs.

 nodes data stores

 Arcs information

Prepared by S.Radha Priya 5

 A structure inside complex processing node might consist of concurrent processes
executing in parallel and communicating through some combination of shared
variables and synchronous and asynchronous message passing.

Prepared by S.Radha Priya 6

Prepared by S.Radha Priya 7

 The entire network might be complex abstraction that provides an
information utility and in turn forms a node in more complex structure of
people and machines.

 The “uses” relationships can be represented by a directed graph, where the
notation A B means “A uses B” or “B is used by A”.

 Hierarchical ordering of abstractions is established by the following rule:

 if A and B are distinct entities, and

 if A uses B, then B is not permitted to use A or any entity that makes

 use of A.

 Hierarchical ordering relation can be represented as an acyclic, directed
graph with a distinguished node that represents a root entity.

 The root uses other entities, but is not used by any entity.

 Hierarchical structure may or may not form a tree structure. The following
figure illustrates directed acyclic graph and a tree structure respectively.

 The diagram is called structure charts depicts the structure of subroutines in
a system.

 Prepared by S.Radha Priya 8

 Recursive routines should be avoided (A B C A)
 The chart reduces the complexity of iteration among software components
 The tree structure reduces the complexity of interactions among the software

components.
 In the diagram there are N(N-1)/2 interconnections among N nodes.

Graph structure chart A tree structure chart

Prepared by S.Radha Priya 9

Illustrating N(N-1)/2 links among N
nodes in a connected graph

 Only N-1 interconnections of N nodes connected in a tree structure. N-1 is the
minimum number of interconnections for N nodes

(N-1) links among N
nodes in a tree.

Hierarchical tree structure components and promotes ease of understanding,
implementation, debugging, testing, integration and modification of a system.

Prepared by S.Radha Priya 10

4. Modularity

 A module is a work assignment for an individual programmer.

 Modular systems incorporate collections of abstractions in which each
functional abstraction, data abstraction and control abstraction handles a
local aspect of the problem being solved.

 A modular systems consists of well defined, manageable units with well
defined interfaces among units.

Properties of a modular system include

 Each well-defined subsystem is useful in other applications

 Each abstraction has a single, well defined purpose

 Each function manipulates one major data structure.

 Modularity enhances design clarity, which in turn eases implementation.

5. Concurrency

 Software systems can be categorised as sequential or concurrent.

 In sequential system one portion of the system is active at any given time.

 Prepared by S.Radha Priya 11

 Concurrency systems have independent processes that can be activated
simultaneously. If multiple processors are available.

 Ex: mutual exclusion, deadlock, synchronization of processes.

6. Verification

 Design is the bride between customer requirements and an
implementation that satisfies those requirements.

7. Aesthetics

 When we speak mathematical elegance or structural beauty, we are
speaking of those properties that go beyond mere satisfaction of the
requirement.

 ex: supreme court justice, I can’t define it

 but I know it when I see it .

Modules and modularization Criteria:

 Architectural design has the goal of producing well structured,
modular software system. The software module named entity has the
following characteristics:

Prepared by S.Radha Priya 12

 Modules contain instructions, processing logic and data structures.

 Modules can be separately compiled and stored in a library.

 Modules can be included in a program.

 Module segments can be used by invoking a name and some parameters.

 Modules can use other modules.

Ex: procedures, subroutines, functions.

1. Coupling and Cohesion

 The fundamental goal of software designs to structure the software
product so that the number of complexity of interconnection between
modules is minimized.

 The strength of coupling between two modules is influenced by the
complexity of the interface, the type of connection, and the type of
communication.

 Obvious relationships results in less complexity.

Ex: common control blocks, common data blocks, common overlay regions in
memory.

Prepared by S.Radha Priya 13

Loosely coupled= connections established by referring to other module.

 Connections between modules involves, passing of data, passing of
elements(flags, switches, labels and procedure names)

 degree of coupling – lowest- data communication

 higher- control communication

 highest- modify other modules.

 Coupling can be ranked as follows:

a. Content coupling: when one module modifies local data values or
instructions in another module.

b. Common coupling: are bound together by global data structures

c. Control coupling: involves passing of control flags between modules so
that one module controls the sequence of processing steps in another
module.

d. Stamp coupling: similar to common coupling except that global data
items are shared selectively among routines that require the data.

e. Data coupling: involves the use of parameter lists to pass data items
between routines.

Prepared by S.Radha Priya 14

• Internal cohesion of a module is measured in terms of the strength of
binding of element within the module.

• Cohesion elements occur on the scale of weakest to strongest as follows.

a. Coincidental cohesion: Module is created from a group of unrelated
instructions that appear several times in other modules.

b. Logical cohesion: implies some relationship among the elements of the
module.

 ex: module performs all i/o operations.

c. Temporal cohesion: all elements are executed at one time and no
parameter logic are required to determine which elements to execute.

d. Communication cohesion: refer to same set of input or output data

Ex: ‘print and punch’ the output file is communicationally bound.

e. Sequential cohesion: of elements occurs when the output of one element
is the input for the next element.

 ex: ‘read next transaction and update master file’

f. Functional Cohesion: is strong type of binding of elements in a module
because all elements are related to the performance of a single function.

Prepared by S.Radha Priya 15

Ex: computer square root, obtain random number etc.,

g. Informational cohesion: occurs when the module contains a complex
data structure and several routines to manipulate the data structure.

DESIGN NOTATIONS

1. Data flow diagrams/bubble charts

 Are directed graphs in which the nodes specify processing activities and
the arcs specify data items transmitted between processing nodes.

 Like flow charts DFD can be used at any desired level of abstraction.

 Data flow diagram might represent data flow between individual
statements or blocks of statements in a routine.

 DFD do not indicate decision logic or conditions under which various
processing nodes in the diagram might be activated.

 It can be represented as informal/formal DFD.

Prepared by S.Radha Priya 16

INFORMAL DATA FLOW DIAGRAM

Prepared by S.Radha Priya 17

FORMAL DFD

Prepared by S.Radha Priya 18

2. Structure Charts

 used during architectural design to document hierarchical structure,

Parameters and interconnections in a system.

Difference between structure chart and flowchart

 Structure chart has no decision boxes

 Sequential ordering of tasks in a flowchart can be suppressed in a
structure chart

Structure chart

Format of a
structure chart

Prepared by S.Radha Priya 19

The chart is represented as module by module specification of input output
parameters, as well as input and output parameter attributes.

3. HIPO Diagrams
 HIPO diagrams (hierarchy-process-input-output) were developed at IBM, as top

down software development.
 HIPO diagram contains
 a. visual table of contents
 b. set of overview diagrams
 c. set of detail diagrams
 HIPO consists of a
 a. tree structured directory
 b. summary of contents of overview diagram
 c. Legend of symbol definition

Prepared by S.Radha Priya 20

VISUAL TABLE OF CONTENTS FOR A HIPO

Prepared by S.Radha Priya 21

HIPO table of contents

Prepared by S.Radha Priya 22

Prepared by S.Radha Priya 23

4. PROCEDURE TEMPLATES
Formal of procedure template:

Procedure Name:

Part of: (subsystem name and number) LEVEL1

Called by:

Purpose:

Designer/date(S):

--

Parameters:names, modes, attributes, purposes)

Input assertion:(Preconditions)

Output assertion:(post conditions) LEVEL2

Globals(Names, modes, attributes, purposes, shared with)

Local data structures:(names, attributes, purposes)

Exceptions:(Conditions, responses)

Timing constraints: LEVEL3

Other limitations:

Procedure body: (pseudocode, structured english, structured flowchart,

Decision table) LEVEL 4 Prepared by S.Radha Priya 24

 In the early stages of architectural design only the information in level1 need
to be supplied.

 As design progresses, the information on levels 2,3 and 4 can be included in
successive steps.

 The term side effect means any effect a procedure can exert.

Ex: side effect modifications to global variables, reading/writing a file,
opening or closing a file, calling a procedure that in turn exhibits side effects.

 During detailed design the processing algorithms and data structures can be
specified using structured flowcharts, pseudocode or structured English.

5. PSEUDOCODE

 Used both in architectural and detailed design

 The designer of pseudo code, designer describes system characteristics,
using short, concise, English language phrases that are structured by key
words such as if-then-else, while-do and end.

Prepared by S.Radha Priya 25

6. STRUCTURED FLOWCHART
 Flowcharts are the traditional means for specifying and documenting algorithmic

details in a software system.
 Flowcharts incorporate boxes for actions, diamond shaped boxes for decisions,

directed arcs for specifying interconnections between boxes a variety of
Prepared by S.Radha Priya 26

Specifically shaped symbols to denote input, output and datastores.

 Structured flowcharts are preferred where clarity of control flow is
emphasized.

Basic forms of
structured
flowchart

Prepared by S.Radha Priya 27

Structured flowchart and pseudocode
equivalent

Prepared by S.Radha Priya 28

7. Structured English

 Used to provide a step-by-step specification for an algorithm.

 Structured english is often used to specify cookbook recipes.

 Preheat oven to 350 degree F.

 Mix eggs, milk and vanilla

 Add flour and baking soda

 Pour into a greased baking dish

 cook until done.

8. Decision Tables

 Used to specify complex decisions logic in a high-level software
specification.

 They are also useful for specifying algorithmic logic during detailed design.

 Design tables can be specified and translated into source code logic.

Prepared by S.Radha Priya 29

DESIGN TECHNIQUES

The design process involves developing a conceptual view of the system,
establishing system structure, identifying data streams and data stores,
decomposing high level functions into sub functions, establishing
relationships and interconnections among components developing concrete
data representations and specifying algorithmic details.

1. Stepwise Refinement

 is a top-down technique for decomposing a system from high level
specifications into more elementary levels.

 Wirth defines the following activities:

a. Decomposing design decisions to elementary levels

b. Isolating design aspects that are not truly interdependent.

c. Postponing decisions concerning representation details as long as
possible.

d. Carefully demonstrating that each successive step is a faithful expansion
of previous steps.

Prepared by S.Radha Priya 30

2. Levels of Abstraction
 Describing by Dijkstra as a bottom up design technique, in which it is designed

hierarchically.
 Each level of abstraction is composed of a group of related functions, some of

which are externally visible.
 Each level of abstraction performs a set of services for the functions on the next

higher level of abstraction. Prepared by S.Radha Priya 31

3. Structured Design
 Developed by Constantine as a top down technique for architectural design of

software systems.

 It is systematic conversion of DFD to structured charts

 Design heuristics such as coupling and cohesion are used to guide the design
process

Prepared by S.Radha Priya 32

Conversion of DFD to structured chart
Prepared by S.Radha Priya 33

 A data dictionary can be used in conjunction with a structure chart to
specify data attributes, relationship among data items and data sharing
among modules in the system.

 The concept of “scope of effect” and “scope of control” can be used to
determine the relative positions of module in a hierarchical framework.

Prepared by S.Radha Priya 34

Transaction-driven data flow diagram

Transaction driven systems have dataflow diagram of the form given above which
is converted into a structure chart having input, controller, dispatcher,
update/output subsystems.

Transaction
driven
structured
chart

Prepared by S.Radha Priya 35

4. Integrated top-down development

 Integrates design, implementation and testing.

 Design proceeds from the highest level routines

 Primary function of co-ordinating and sequencing the lower-level of
routines.

 The integration, design and implementation is illustrated in the following
example.

 The purpose of main is to co-ordinate and sequence the get, process and
put routines. These 3 routines can communicate only through main.
Similarly sub1 and sub2 can communicate only through process.

Prepared by S.Radha Priya 36

5. Jackson Structured Programming

 Developed by Michael jackson as a systematic technique of mapping the
structure of a problem into a program structure to solve the problem.

Mapping 3 steps:

1. The problem is modelled by specifying the input and output data
structures using tree structured diagrams.

2. The input and output model is converted into a structural model of the
program.

3. The structural model of the program is expanded into a detailed design
model that contains the operations needed to solve the problem.

 Input and output structures are specified using a graphical notation to
specify data hierarchy, sequences of data, repitition of data items and
alternate data items.

Prepared by S.Radha Priya 37

 Convert the above model into structural model
 Third step structure model to detailed model involves 3 steps:
1. A list of operations required to perform the processing steps is developed
2. The operations are associated with the program structure
3. Program structure and operations are expressed in a notation called schematic

logic which is stylized pseudocode.

Prepared by S.Radha Priya 38

Input and output structure for an inventory problem

Prepared by S.Radha Priya 39

Correspondence between input and output structure for an inventory problem

Prepared by S.Radha Priya 40

Program structure for an inventory problem

Prepared by S.Radha Priya 41

Detailed Design involves developing a

 List of operations needed in the program

 Associating the operations with program

 Structure and translating the annotated structure diagram into schematic
logic(Psudocode)

Prepared by S.Radha Priya 42

Association of operations with program structure

Prepared by S.Radha Priya 43

• Walkthrough is a method of conducting informal group/individual review. In a
walkthrough, author describes and explain work product in a informal meeting
to his peers or supervisor to get feedback. Here, validity of the proposed
solution for work product is checked.

• It is cheaper to make changes when design is on the paper rather than at time
of conversion. Walkthrough is a static method of quality assurance.
Walkthrough are informal meetings but with purpose.

INSPECTION

• An inspection is defined as formal, rigorous, in depth group review designed to
identify problems as close to their point of origin as possible. Inspections
improve reliability, availability, and maintainability of software product.

• Anything readable that is produced during the software development can be
inspected. Inspections can be combined with structured, systematic testing to
provide a powerful tool for creating defect-free programs.

• Inspection activity follows a specified process and participants play well-
defined roles.
An inspection team consists of three to eight members who plays roles of
moderator, author, reader, recorder and inspector.

WALKTHROUGH

Prepared by S.Radha Priya 44

https://www.geeksforgeeks.org/software-engineering-software-product/
https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/

SOFTWARE DESIGN

• Software design is an iterative process through which requirements are
translated into a “blueprint” for constructing the software. The design is
represented at a high level of abstraction. As design iterations occur,
subsequent refinement leads to design representation at much lower
levels of abstraction.

A set of principles for software design:

• The design process should not suffer from “tunnel vision”.

• The design should be traceable to the analysis model.

• The design should not reinvent the wheel.

• The design should “minimize the intellectual distance” between the
software and the problem in the real world.

• The design should exhibit uniformity and integration.

• The design should be structured to accommodate change.

• The design should be structured to degrade gently.

• Design is not coding.

• The design should be assessed for quality.

• The design should reviewed to minimize conceptual errors.

Prepared by S.Radha Priya 45

