
SOFTWARE ENGINEERING - UNIT III -18BIT41C

UNIT III: Software Requirements Definitions: The Software
Requirements Specification – Formal Specification Techniques –
Languages and Processors for Requirements Specification.

Prepared by S.Radha Priya 1

THE SOFTWARE REQUIREMENT SPECIFICATION

Format of a software requirement specification

 Product overview and summary

 Development, operating and maintenance environments

 External interfaces and dataflow

 Functional requirements

 Performance requirements

 Exception handling

 Early subsets and implementation priorities

 Forseable modifications and enhancements

 Acceptance criteria

 Design hints and guidelines

 Cross reference index

 Glossary of terms

Prepared by S.Radha Priya 2

AN INFORMAL DFD

Prepared by S.Radha Priya 3

Sec 1 and 2 elaboration of the software product characteristics contained in
the system definition and the preliminary user manual.

Sec 3 includes user displays, report formats, user commands, DFD , data
dictionary.

DFD specify data sources, data sinks, data stores, transformations to be
performed on the data and the flow of data between sources, sinks,
transformations and stores.

A formal DFD

Sources and data sinks shaded rectangles

Transformations ordinary rectangles

Data stores open ended rectangles

Arcs data flow

Prepared by S.Radha Priya 4

ORDER PROCESSING

Prepared by S.Radha Priya 5

• The entries in a data dictionary include the name of the data item and
attributes such as the DFD, where it is used its purpose, where it is derived
from its sub items and any notes that may be appropriate.

Ex: data dictionary entry

Name : create

Where used :SDLP

Purpose : create passes- user created and design

Derived from : user interface processor

Subitems :name

 uses

 procedures

 references

Notes : create contains one complete user-created design entity.

Prepared by S.Radha Priya 6

Sec 4: software requirement specification specifies the functional
requirements it is expressed in relational and state oriented notations.

Sec 5: response time activities, processing time for various processes,
throughput, pricing, secondary memory constraints.

Sec 6: Exception handling : A table of exception conditions and exception
responses should be prepared. Ex: table overflow, array indices out of range,
runtime stack overflow etc.,

Sec7: Software developed as a series of successive versions. The initial version
may be skeletal prototype each successive user functions and provides
framework for evolution of the product.

Sec 8: foreseeable modifications and enhancement that may be incorporated
in the product following initial product release.

Sec 9: software product acceptance criteria are specified i.e functional and
performance test that must be performed, and the standards to be applied to
the source code.

Sec 10: contain design hints and guidelines

Sec 11: relates product requirements to the sources of information used in

 Prepared by S.Radha Priya 7

Deriving the requirements verification and reexamination of requirements,
constraints and assumptions.

Sec 12: provides definition of terms that may be unfamiliar to the customer
and the product developers.

FORMAL SPECIFICATION TECHNIQUES

1. Relational Notations:

a. Implicit equations: State the properties of a solution without stating a
solution method.

 ex: Matrix inversion as

M * M’ = I + E

Original Matrix

Inverse Matrix Identity Matrix

Error Matrix

Prepared by S.Radha Priya 8

E- specifies allowable computable errors

Ex: Square root function, SQRT

(0<=X<=Y)[ABS(SQRT(X)**2-X)<E]

 for all real values of X in the closed range 0 to Y, computing the
square root of X, squaring it, subtract X, result in error value.

b. Recurrence Relations: The recurrence relation consists of an initial part
called the basis and one or more recursive parts.

Fibonacci numbers can be defined as:

 FI(0)=0

 FI(1)=1

 FI(N)=FI(N-1)+FI(N-2) for all N>1

c. Algebraic axioms: Mathematical systems are defined by axioms. The axioms
specify the fundamental properties of a system and provide a basis for
deriving additional properties that are implied by the axioms. These
additional properties are called theorems.

Ex: LIFO property of stack object operations

Prepared by S.Radha Priya 9

NEW Creates a new stack

PUSH Adds a new item to the top of a stack

TOP Returns a copy of the top item

POP Removes a top item

EMPTY Tests for an empty stack

Operation NEW yields a newly created stack PUSH requires two
arguments.

Syntax:
OPERATION DOMAIN RANGE
NEW () STACK
PUSH (STACK, ITEM) STACK
POP (STACK) STACK
TOP (STACK) ITEM
EMPTY (STACK) BOOLEAN

Prepared by S.Radha Priya 10

AXIOMS

(1)EMPTY(NEW)= true

(2)EMPTY(PUSH(stack, item))=false

(3)POP(NEW)=error

(4)TOP(NEW)=error

(5)POP(PUSH(stack, item)=stack

(6)TOP(PUSH(stack, item))=item

The axioms can be stated in English:

1. The new stack is empty

2. A stack is not empty immediately pushing an item onto it.

3. Attempting to pop a new stack results in error

4. There is no top item on a new stack

5. Pushing an item onto a stack and immediately popping it off leaves the
stack unchanged.

6. Pushing an item onto a stack and immediately requesting the top item
returns the item just pushed onto the stack.

 Prepared by S.Radha Priya 11

d. Regular Expressions is used to specify the syntactic structure of symbol
strings. So, regular expressions can thus be viewed as language generators.

Rules for forming Regular Expressions

1. Atoms: The basic symbols in the alphabet of interest form regular
expressions.

2. Alternation: if R1 and R2 are regular expression then (R1|R2) is a regular
expression.

3. Composition: if R1 and R2 are regular expressions then (R1.R2) is a
regular expression.

4. Closure : if R1 is a regular expression, then (R1)* is a regular expression.

5. Completeness: nothing else is a regular expression.

Example

1. Given atoms a and b then a denotes the set {a} and b denotes the set {b}.

2. Given atoms a and b, then (a/b) denotes the set {a,b}

3. Given atoms a, b and c then ((a/b)/c) denotes the set {{a,b},c}

4. Given atoms a and b then (ab) denotes the set {ab} containing one
element ab.

Prepared by S.Radha Priya 12

5. Given atoms a, b and c then ((ab)c) denotes the set {abc} containing one
element abc.

6. Given atom a, then (a)* denotes the set {e,a,aa,aaa….} e is the empty set.

Ex:

(a(b/c)) {ab,ac}

(a/b)* {e,a,b,aa,bb,ab,ba,aab…..}

((a(b/c)))* {e,ab,ac,abab,acac,abac,acab……}

* Kleene star

+ Kleene plus notations

2. State-oriented notations

a. Design Tables: provides a mechanism for recording complex decision
logic. It is segmented into 4 quadrants.

 Condition stub

 Condition entry

 Action stub

 Action entries.

Prepared by S.Radha Priya 13

Basic elements of a decision table

Decision Rules

Rule1 Rule2 Rule3 Rule4

(Condition stub) (Condition entries)

(Action stub) (Action entries)

1 2 3 4

Credit limit satisfactory Y N N N

Pay experience is favourable - Y N N

Special clearance is obtained - - Y N

Perform approve order X X X

Go to reject order X

Limited-entry decision table

Y-Yes, N-No, - = don’t care , X - perform action.

Prepared by S.Radha Priya 14

An Ambiguous Decision Table An incomplete Decision table

Decision rule

Rule1 Rule2 Rule3 Rule3

C1 Y Y Y Y

C2 Y N N N

C3 N N N N

A1 X

A2 X

A3 X X

R3 and R4 are redundant rules.
R2 and R3, and R2 and R4 are contradictory rules

Decision rule

Rule1 Rule2 Rule3

C1 Y Y

C2 Y N

C3 Y

A1 X

A2 X

A3 X

A decision table is complete if every possible set of conditions has a
corresponding action prescribed failure to specify an action for any one of the
combinations results in an incomplete decision tables.

Prepared by S.Radha Priya 15

b. Transition tables

Transition tables are used to specify changes in the state of a system as a
function of driving forces.

Transition Diagram

Transition Table

Prepared by S.Radha Priya 16

An augmented Transition Table

 Transition table that is augmented to indicate actions to be
performed and outputs to be generated in the transition to the
next state.

 Transition diagrams are alternative representatives for transition
tables.

 It is represented as arcs between nodes.
 Arcs are labelled with conditions that cause transitions.
 The transition diagrams and transition tables are

representations for finite state automata.

Prepared by S.Radha Priya 17

c. Finite state mechanisms

Data flow diagrams, regular expressions, transition tables can be combined to
provide a powerful finite mechanism for functional specification of software
systems.

𝐷𝑠 start marker
 𝐷11 zero or more 𝐷11 messages
𝐷12 zero or more 𝐷12 messages
𝐷𝐸 end-of-data marker

The system for which the incoming data stream consists of a start marker 𝐷𝑠 ,
followed by zero or more 𝐷11 messages, followed by zero or more
𝐷12 messages followed by an end-of-data marker 𝐷𝐸 . The purpose is to split
𝐷11 messages to file 𝐹6 and 𝐷12 messages to file 𝐹7 .

Prepared by S.Radha Priya 18

Specification of the “Split” process.

Prepared by S.Radha Priya 19

d. Petri Nets

 Petri nets invented by carl petri at the university of Bonn, west germany.

 Petri nets provide a graphical representation technique.

 Petri nets overcome the limitations of finite state mechanisms.

 Petri nets is represented as a bipartite directed graph. Two types of nodes
are called places(tokens) and transitions.

 Petri nets are characterized by an initial marking of places and a firing rule.

 An enabled transition can fire , when a transition fires, each input place of
that transition loses one token and each output place of that transition
gains one token.

 Petri net defined as a quadruple, consisting of

 a set of places P

 a set of Transitions T

 a set of arcs A

 a marking M

 C=(P, T, A, M)

Prepared by S.Radha Priya 20

Petrinet model of concurrent processes 𝑡1, 𝑡2 , 𝑡3

Prepared by S.Radha Priya 21

Completion of 𝑝1 which enables co-begin. Firing of the co-begin removes the
token from 𝑝1 and places in 𝑝2, 𝑝3 , 𝑝4. This enables 𝑡1 , 𝑡2 ,𝑡3. They can fire
simultaneously in any order. When each tasks 𝑡1 , 𝑡2 ,𝑡3 computes, it is placed
in 𝑝5 , 𝑝6 ,𝑝7.

A deadlock petri net

Both 𝑡1 and 𝑡2 are waiting for the other to fire and neither can proceed.

Prepared by S.Radha Priya 22

Mutual exclusion conflict situation

Both 𝑡1 and 𝑡2 are enabled , but only one can fire. Firing one will disable the
other .

Initial Marking for the producer/consumer Petri Nets
𝑡1produce
𝑡2 Place in buffer
𝑡3 Remove from buffer
𝑡4 Consume

Prepared by S.Radha Priya 23

 𝑡1 is the producing process, 𝑡2 places a produced item in the buffer

 𝑡3 removes an item from the buffer, 𝑡4 consumes it

 E current number of empty buffer positions

 F indicates the current number of filled buffer positions

Prepared by S.Radha Priya 24

 M prevents simultaneous insertion and removal of items from buffer

 Initially M, 𝑃1, 𝑃3 has one token 𝑃2, 𝑃7, 𝑝4, F has zero token E has N tokens.

 E prevents buffer overflow

 F prevents buffer underflow

 M prevents simultaneous reading and writing of the buffer

 An invariant is a set of places whose total number of tokens remains
constant and which has no invariant subsets.

 ex:{𝑃1,𝑃2} {𝑃3, 𝑝4}{𝑝5, 𝑝7}{𝑝6}

The petri net exhibits mutual exclusion between 𝑡2 and 𝑡3 because both are
marked by 𝑃6 and {𝑃6 } is an invariant, having one token. Thus 𝑡2 and 𝑡3 are
mutually exclusive.

Prepared by S.Radha Priya 25

