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CHAPTER I

RELATIONS

§ 1. CARTESIAN PRODUCT OF TWO SETS

Let A and B be two sets. Consider the pair ( a, b ) in which the first
element a is from A and the second element b is from B. Then ( a, b ) is called
an ordered pair. 1n an ordered pair, the order in which the two elements are
written is important. Thus (a, b)and (b, a) are different ordered pairs. We
say that two ordered pairs (a, b ) and ( c, d ) are equal if and only if a =c and
b=d. Now we can define the Cartesian product of two sets.

I')‘eﬁniti(m
Let A and B be two sets. Then the set of all ordered pairs ( X,y )
where x € A and y € B is called the Cartesian Product of the sets A and B and
is denoted by A x B, read as “Cartesian Product of A and B” or simply “A
cross B”. Thus we have

AxB={(x,y):x€AandyeBj

Hlustration
LetA={1234}andB=1{2237}

Then A xB={ (I- 2 (1,3). (1, M, (2.2, (2,3). (2.7
(3,2).(3.3).(3,7.(42).(43).4.7)

B xA= & D(22@23).29 3. 1).(3.2)
3,31 (3.4, (7. ).(7.2),(7.3). (7. 4)

It is to be noted that A x B # B X A, if the sets ‘A and B are different.

Note v
. If A has m elements and B has n elements, then A x B will have mn

elements, and B x A will also have mn elements. But the elements of
B x A need not be the same as the elements of A x B.

2 Ifeither A or B is the null set, then A X B is the null set.

3 We can also define the Cartesian Product of more than two sets in a

similar way. Thus, if A . Az, Au are n sets, their Cartesian Product is

defined as
A}'xAzx XA =H(aa, an)la' €Aa €A, .4 eA_ |



Discrelé Malnerr= ==

2.2
For example. if R is the Sel:fall re:l}n::;bj;ss' :f:rmen a5 RZ- ‘
, - (a.? - R.a, € o ’
:::X o {{::: ;j.):;,;c R: bR E R } and this is written as R |
: wo dimensional space. A cLengir:ltat(ea’isb; ;rl'ldR)’

4. R represents the t _ X C
represents the point (a, b) In the plane whose X 77 nal space
coordinate is b. Similarly R represents the three dimensio |

" Worked Examples .
W.El Supposein R xR, theor 2. 2y+1) and (y = 1, X*2)
are equal. Findx and y.

Solution
By the definition of the equality of ordered pairs, we have

dered pairs (X —

x-2=y-1 e, x-y=1 cemexeens (D)
and 2y+1=x+2 ie,x-2y=-1 e (2)
[ J

Sglving (1)and (2), we getx=3,y=2.

WE 2 IfA={23},B={1,2,3}andC={1,3,5} find AxBxC.

Solution
A convenient method of finding A x B x C is through the diagram

shown below: i

1 (2.1.1)
3(2.1.3)

5(2.1.5)
(2.2
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5(3.25)

1 (3.3.1)
3(3.33)

'5(3.3.5)

2, 1,1),2,1,3),(2,1,5),2,2, 1), (2, 2,3), (2. 2,
AXBXC=‘%le%@ﬁ3LQJ51&JJi&JJi&J,
(3,2,1),(3,2,3),(3,2,5),(3,3,1), (3, 3,3), 3, 3,
WE3. IfA={c,d},B={1,2},C={2,3} find
i) Ax(BUC) i) (AXxB)U(AxC)
iii) Ax(BNC) ~ iV)(AXxB)N(AXC)
Solution '
i) First(BUC) ={1,2,3}
Then Ax(BUC) ={c,d}x{1,2,3)}
= {(c, 1), (5, 2), (c, 3), (d, 1), (d, 2), (d, 3)}.
ii) First AXxB ={(c, 1),(c,2),(d1),(d,2)}
AxC ={(c,2),(c,3),(d,2),(d,3)}

Then (A x B)U (A x C) ={ (c, 1), (¢, 2),(d, 1), (d, 2), (c, 3), (d, 3)}
We find from (i) and (ii), that
Ax(BUC) = (AxB)U(AXC)

iii) First BN C
ThenAx(BNC)

([

{2}
{c,d}x{2}={(c.2).d2)}
iv) (AXB)N(AXC) ={(c.2).,2)}

We find from (iii) and (iv) that
Ax(BNC) = (AxB)N(AXC)

2.3
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3

WE4 IfA B Careany three sets, prove pat MC A, Nov ‘98, MU.)

(AanMAxC)(

Ax(BUC)

Proof

a) Let us show that ‘
Ax(BUC) € (AxB)U(Ax(,)

Let ( x. y ) be any element of Ax(BUC)

Thenx ' Aandy € BUG.
ic.xeAandyeB or
..(x.y)e(AxB) or
ie.(x,y)e (AxB)U (AxC)
~Ax(BUC) c (AxB)U(AxC) ------------
b) Let us show that
(AXB)U(AxC)c Ax(BUC)
Let (z, w) be any element of(AxB)U(AXC)-
Then (z, w) € AxB or (z,w)eAXC
id.zeAandwe B or seAandweC
ie.ze AandweBorC
i.e..(z.w)eAx(BUC)
.'.(AxB)U(AX'C)c Ax(BUC)  cooemeeeee (2)
From (1) and (2), we have
Ax(BUC) =(A><B)U(A><C) o

xeAandyeC.
(x,y)e(AXC)

Exercises
. IfB={-1,1}and C= {0, =D, (1, D, (1D, (-1, -1) }, find A so that
AxB=C,
5 IFAxB={(62).(63),(64).(1,2).(1,3).(1,4) }, find Aand B.
3. Determine x or y so that the ordered pairs are equal in the following :
a) (4,x)=(4,3) b) (3y,a)=(12,a)
¢) 3x+1,4)=(7.4) d) (PASCAL, ALGOL) = (x, ALGOL)
4 Solve each of the following for x and y :
a) (5% y+2)~ (x-8, -y)
by (y.4)=Qy-1,x)
) (y-2.3-x)=(2.-3)
5. A mar.keu:ng research firm classifies a person according to the following
two criteria . g

Sex : m = male. f = female
Highest level of education completed :
e - elementary h~ high school ¢ ~ college g = graduate school

a) How many categories are there in this classitication scheme?
b) List all the categories.- me’



Relations

6.

10.

12.

13.

14.
15.

2.5.

A medlcal.experlment classifies each subject according to two criteria.
Smoking Pattern :
| s = smoker n ~ nonsmoker
Weight :
u ~ under weight a - average weight
0 = over weight

List all possible classifications in this scheme.

If A={p.qr}.B={23}andC = {a,b}, list all the elements of
AxBxC.
LetA={ab}and B={1,2 3} Listthe elements of
i) AxB i) BxA iii) AxA iv) Bx B
IfA={ab,c}and B={b,c,d},describe the sets
1) AXA i) BxB
iii) B x A iv) AxB
v) (AXA)N(BxB) vi)(AxA)N(AxB)
viD)(BxB)N(AXxB) viii)(BXxA)N(AXB)
If A, B, C be any three sets, prove that
Ax(BNC)=(AxB)N(AxC) (M.C.A.,Dec 96, Bharathiar Uni.)
Let A={ab}, B={1,22345}andC={3579} Find
(AxB)N (A xC)without finding A x B and A x C.
If A, B, C be any three sets, prove that
i) (AUB)XC =(AxC)U(BxC)
ii)(ANB)xC =(AxC)N(BxC)
Fill in the blanks :
i) If(x,y) e Ax(BUC),then

XE uvvrnnn. and Y B .cuonss .
ii)lf(x,y)e(AxB)U(AxC),then

a) XE ....... b)ye....... or YyE ....... :
iit) If A has n elements, A has n, elements and A_ has n, elements, then

Al X A2 XA has ................ elements.

3
State extended rule of products . (B.E., Nov 96, M.S.U.)

IfA=(+ —)and B={00,01,10,11}
i) list all the elements of A x B (Oct '98. B.E., M.U.)

4 3
ii) how many elements do A and ( A x B) have ? .
(Dec '96, M.C.A,, Bharathiar Uni.)

Answers

l.
2.
3.

{1,-1}
A={61}andB= {234}

a) x=3 b) y=4 c) Xx=2 d) x = PASCAL
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2.6.

" x=6' y:4
4 a)x -~ -2, y-—1 byx=#2, y~| c) Y
5. a) 8 b) { (m, &), (m. h), (m. ), (m, @), (£, &), (£. ) (f.o.(f.e)}

{ (s. u). (s. A). (5. 0), (n, u), (n, a), (n, 0) }.

7 ((p.2.2). (p. 2. b). (p. 3. a), (p. 3. b), (9. 2, @), (4. 2. D)
{ (2. 3, a;, x; 3, bi. ((pr. 3. a).(r.2.b), (r.3,2),(r.3.b)
8. a) {(a 1) (a2)(3)(b1).(b2), (b3}
b) { (1.a).(1,b),(2,2),(2,b),(3,a),(3,b) }
¢) {(a,a). (a,b),(b,a),(b.b)}
d) {{(1, . (1.2), (1.3), 2, 1), (2,2),(2.3), (3. 1). 3. 2), (3.3)}
9. i) {(a a),(a,b),(ac) (b a),(b,b), (b, c)(c, a) (c. b), (c.c)}
i) { (b, b), (b, ¢), (b, d), (¢, b), (c, ©), (c, d), (d, b), (d, €). (d: d) }
iii) { (b. a). (b. b), (b, c), (c, a), (¢, b), (¢, ¢), (d, @), (d, b). (d, €) }
iv) { (a, b), (a, ¢), (a, d). (b, b). (b, c), (b, d), (c, b), (c, ¢), (c,d) }
v) { (b,b), (b, c), (c,b), (c,c)}
vi) { (a, b), (a,c), (b, b), (b, ¢), (c, b), (c, ¢) }
vii){ (b, b), (b, ¢), (b, d), (c, b), (c, ¢), (c, d) }
viii) { (b, b), (b, ¢), (¢, b), (¢, ¢) }
11. {(a, 3),(a 5),(b,3),(b)5)}
13. )xe A and yeBUC
ii)a)xe A b)yeBoryeC.
1) nnn
15.1) { (+, 00), (+, 01), (+, 10), (-, 00), (=, O1), (=, 10), (—, 11) }.
i) 16; 512.

§ 2. RELATIONS

The idea of a relation between the elements of two sets or between the
elements of a set is quite common. For example, in the set H of all human
beings, we have relations like ‘father of, ‘sister of’, ‘taller than’ etc.. In the set
N of natural numbers, we have relations like ‘less than or equal o nd. € se
of', *square of". Suppose we want to use symbol R to denote a relat] i thl‘SOT
‘father of”, then we can write x R y if x is the father of y: or we can on such as
ordered pair (X, ¥) Is related by the relation R. Thus the.set of all o t!] ¢
(x, y) satisfying x Ry defines the relation R completely. So a Oll'de.red pairs
rise to a subset o.f A x B if the relation is between an éleme tl'e ation gives
element of B. This leads to a mathematical definition of 3 relatign of A and an
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Definition

Let A and B be non en

_ : Ly sets. A relation R from the set A to the set
B is a subset of A x B,

Note — This definition allows the cmpty subset of A x B to be a relation.
This relation does not contain any ordered pair and is referred to as the null
relation or the empty relation in A x B. It also allows A x B as a relation
which is referred to as the universal relation from A to B.

IfB = A, we often say that the relation is on A.

IfRisa sul?set of A x B and (a, b) € R, we say that a is related to b
by R and we also write aR b. Ifg Is not related to b, we write a K b.

We now give a number of examples :

Examples

I LetA={1.23}andB={a,b}. Then the subset R = { (1, a), (1, b),

(2. a), 3. b) } is a relation from A to B defined by the following
statements :

IRa, IRb,2Ra 3Rb.

2. Let A and B be sets of real numbers. We define a relation R from A to B
byaRbifand only ifa=b.
3. LetA={1,2,34 }. We define a relation R on A by a R b if and only if

~a<b. ThenR = { (1,2),1, 3), (1,4), (2, 3), 2, 4), 3,4)}.

4. LetA = Z+, the set of all positive integers. We define the relation R “is a
divisor of” in A by a R b if and only if a divides b. Note that 4 R 12 but
8 K18.

5. Let A be the set of all real numbers. We define the relation x R y if and
only if x and y satisfy the inequality

o} 9

Ll A <1
Then the set R consists of all points on and in the interior of the ellipse in
figure 1.

h -

' (0,2)

/ \.% . ) -
(=3, 03\\\& /7 (3,0)

h————"""

0,-2)

Figure 1. {(x.y): %—'+yz— =1}
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Worked Examples

; a_}
) . 1€ a 5 a 2 a ’ a *
W.E Tl A manufacturer of ries { 82 8y %y a5

antomobiles has five facto .
following table gives

and six distribution centres { b, b, b, b, b.‘«b,, }. The

the distance ( in Kms.) from a 10 b'
b b b b, b, b,

1 2 3
1200 1100 400 600 1 800 700

1
800 700 1200 450 400 500

a
az
a 1000 600 1000 650 600 600
a 600
a

250 400 500 350 900

800 280 300 400 ] 300 2400

We define the relation a R b, if and only if the distance from a.to bi is at least
! | )

800 Kms. List the elements in R
Solution .
5 = { (a,b,). (a,b). @, b (@, b). (2, b)- (s b)), }
(a3s b3)’ (34, bS)’ (as’ b‘)s (aS’ b )ﬂ (aS’ b6) ®

W E2 Sets A and B have respectively m and n elements. How many
elements has A x B 2 How many different relations are there from A to B 4

Solution
The set A x B has mn elements.
Each subset of AxBisa relation from A to B.

As the number of subsets of AXBis Zmn, there are 2mn different relations from

A to B.
[ We know that a set of n elements has 2" subsets. See Chapter 1, theorem 2. ]

DOMAIN AND RANGE OF A RELATION

Let R be a relation from A to B ie., let R be a subset of A x B. The
domain D of the relation R is the set of all the first elements of the ordered
pairs which belong 10 R.

D={alac€ A and (a, b) € R for some b € B'}

The range E of the relation is the set of all the second elements of
ordered pairs in R.

ie. E={blbE€ B, (a,b) € R forsome a € A. }

Clearly the domain of a relation from A to B is a subset of A and its range is a

subset of B.
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f*’;"’;"”"'_"c}ﬁ AL23 4y and B - (s cpand R - { (1,042, 5). 3.0}
¢ domain of R is the set { 1,2, 3 } and the range of R is the set { r, s }.

Exercises
I. Let R be the relation from A {1.3.5.7.9 btoB {2 4.6, 8} which

IS deﬁned asa R bifand only ifa > b. List the elements of R and find its
domain and range.
Let R be the relation from A - {2,3,4,5}t0B={3,6,7,10}, which is
defined by the expression “x divides y”.
i) Write R as a set of ordered pairs.
i) Find its range and domain.
Let R be the relation in A = {2,3,4,5, 6} defined by the x R y if and
only if | x — y | is divisible by 3. Write R as subset of A x A.
4. Let R be the relation on the set N of all natural numbers given by the
expression x + 3y = |2,
i.e.,R={(x,y)|xeN,yeN,x+3y= 12 }.
1) Write R as a set of ordered pairs.
i) Find the domain and range of R.
5. Let R be the relation on the set N of all natural numbers given by the
expression 2x +4y = 15.
i) Write R as a set of ordered pairs.
ii) Find the domain and range of R.
6. ‘Arelation R in Z, the set of all integers is defined as follows : (
x Ry < x is the square of y. Which of the following statements are true 5

i) 4R2 ii) 2R 4
iii) 9R(=3) iv)9R3 v)3R9.
7. A relation R in C,.the set of all complex numbers is defined as follows :
X Ry < x is the conjugate of y. |
Which of the following statements are true ?
i) 4R4 i) iR
i) =2 R 2 iv) (1+i) R (1=1)
v) (I=i) R(1+i) vi) (= 1+i)) R (=1-1)
8. Giventhat R is arelationin { 1.2,3.4,5 } suchthat |R3.2R4.3 RS,
what are the domain and the range of R ? Give some verbal description of
the relation.
9. IfS={1,2,3}andT={x,y}, listall the elements of S x T.
LetA={1,2,3,4}andB={1,2,3,4}. Ineach ofthe following, find

all the pairs of A x B that belong to R.
a) R={(xy)|x2y} b) R={(x,y) x>y}

¢) R={(x,y)|x<y) d) R={(xy)[x=y }

|89

¥
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Answer 6).(9.8) |
LR (.20, (5, 2), (5. 4. (1.2), (0. 4, 7,61 O 2 9. 4).(9:©) ‘

Domain(R) = { 3,5.7.9 } Range(R) = { 2. 4. 6 8}
R = {(2.6).(2.10), 3. 3). (3, 6). (5. 10) }. }

. . , = 10, 3
Domain(R)  {2.3.5} Range(R) = { 6. 1% |
R - {(2.2).(2.5).(3.3).(3,6).(4 4. (5. 5). (5.2). (6. 3), (6,6) }

: 2.1
R = {{3.3.(6.2).09. D} Domain(R) = {3.6.9 }: Range(R) = {3. 2. !}

i) ¢ ii) domain is ¢ and range is ¢.

(1), (iii), (iv) are true.

(1), (iv), (Vv), (vi) are true.

Domain = { 1,2, 3 }; Range =
SxT={(1Lx),(1,y20&YG0CNE

0. 3) {(1,1), 2 1223 1)3,2,6,3),.@4. D@ 2), (4,3). (4.9}

b) {2, 1,3, 1) (3.2.(4 1),4,2),4.3)}

¢) {(1,1),(1,2),(1,3).(1,4),(2.2), 2, 3),(2, 4), 3,3), 3, 4);

d {(,1),42)}

r

{3,4,5};a+2=bwherea,be R.

4.4}

§3. REPRESENTATION OF RELATION

I. MATRIX OF A RELATION

IfA={a,a,..a } and B = { b‘, b, ..., b“ } are finite sets
containing m and n elements respectively and R is a relation from A to B, we

can represent R by the m X n matrix
M, = [mu] which is defined as follows :

_{1 if(ai, bi) e.R.
T~ 1o if(ai, b') ¢ R.

Example. Let A = { a8, 2, }andB={b.b b b }andR be the relation
givenby R={(a.b).(a.b) (a,b) (a, b).(a.b)(a.b)}.
Clearly the matrix of R is CRR

|
MR={?

o -
—-—-c
o0 -
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1. DIGRAPH OF A RELATION

I'he relation R. on a finite set A, can be represented pictorially as

follows : A small circle is drawn for each element of A and marked with the
corresponding element.  These circles are called vertices. An arc is drawn
from the vertex a to the vertex a. ifand only ifa R a. This is called an edge.
This pictorial representation of R is called ed g

Fhus, it R is a relation on A,
correspond exactly to the elements of th
exactly to the ordered pairs in R.

" In a digraph of R, the indegree of a vertex is the number of edges

terminating at the vertex. The outdegree of a vertex is the number of edges
leaving the vertex. ————

a directed graph or digraph of R.
the vertices in the digraph of R
e set A and the edges correspond

Example 1. Let A={a,b,c,d} and R the relation on A that has the matrix

/'
1101
loo1o
M=l oo
1000
_ Y,

Construct the digraph of R and list the indegrees and outdegress of all vertices.
Clearly R = { (a, a), (a, b), (a, d), (b, ¢), (c, ¢), (c, d), (d, a) }.
The digraph of R is shown below.

- SN,

C 9

O

Figure 2. Digraph of the Relation
The indegrees and outdegrees of all vertices are given in the following table.
a b ¢

d
Indegree 2 1 2 2
Outdegree 3 1 2 1
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Exercises ider the following

l.

o

I

4.

5.

y ,oNns
Given A - {1,2,3.4)andB = { x. ¥ 2} Con

relation from A to B.
R={(1.y)(l,2).(3.y).4.x), 42}

Determine the matrix of the relamon.(Nov 0. B.E.. Bharathiar Dasan Uni.)

i IX.
Let A ={ 1,2, 3,4}. Find the relation R on A determined by the matri

1
= 0
M, :

1

—_ 0 o O

oo—n—-
—_0 O O

Find the relation determined by the following digraph. Find the indegree
and outdegree for each vertex.

Find the relation determined by the following digraph.
q, 5
® cg/

Find the relation determined by the following digraph.

~N
®



6. A= {1234 and R ((1 1) (1 3) 2 3). (3 253 3.4 3}
draw the digraph of R

Answers ( 01| 3
! 000
R 01 0

1 O |
\ y

RO D 3)0(2,3), (3. 1), (4, 1), (4. 2).(4.4) )
I A-{12.3.45)and
R-{(1.2)(2.2).(2.3). (3, 9). (4, 4),(5.1).(5.4) }

A

1 |12 [3 |4 |5
Indegree 1 12 |1 |3 o
Outdegree P |2 |1 1 |2

4 A={1,2,3.4.5)}and
R={(1,2),(1.3),(1,4).(2,2). (2, 3), (4, 1), 4, 4), (4. 5) }
S A={1,2,3,4)and
R={(1,1).(1,2),(21)(22),(23),(24),(3.4,@ 1) ).
6.

OCN

@

§4. OPERATIONS ON RELATIONS

As relations from A to B are subsets of A x B, the usual operations,
on sets such as complementation, intersection and union, can be applied to

relations also.

Definitions N
Let R and S be relations from A to B. Then

i) R2 ={(a,b) e AxB|(a, b)¢R} is the complement of the relation R
i) RNS={(a,b)e AxB|(a b) e Rand (a, b) €S } is the intersection of
the relations R and S.
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2.14.
' ' f the
is the unton O
b) AxB|(a bh) € R or (8, b) € S}
iV RUS - { ab)e AxBIE

relations R and S. S— relations

S aS‘;OCl
relation from B to

definition
_we can get ¢
(a,b) € R.

g the above

R from A 1O
1 each pair

Given relations R and
from A to B Given a relation
A by reversing the ordu of elements i

l = |
Definition | R
Every relation R from a set A into a set

fromBto A Wthh ns deﬁned by

{(ba)l(ab)GR} | | X
consists of those ordered patrs, which when

B has an inverse relat

i.e.. the inverse relation R
reversed belong to R.

Note
1. The relation R from a set A into a set Bis

A x B. The inverse relation R is a subset of the Cartesian p
B x A.
2. Clearly (R ) =R,

If R is tHe relation ‘husband of* then R 1s the relation ‘wife of” in the set
of all human beings.

a subset of the Cartesian product
roduct

Illustrations
. Lt A={a,b,c}andB={1,2}
Then R = i i
- en . { (_al, 1), (a, 2), (c, 1) } is a relation from A tc B. The inverse
relationof RisR = {(1,a),(2,a),(l,¢c)}.

2. LetA={ab,c}
Then R = { (a a), (a, b), (a, c), (b, ¢) } is
a rel
relation of Ris R~ = { (a, a), (b, a), (c, ), (c} b) } relation in A. The inverse

The relation belween the domain and
range o
and e O(R | ge of u relation R and the domain

R cons
ists of the same pairs as are in R but i
the first element in an element of R will be a second ln ot e Delet, S0
nd e .

=1 ement |
R Hence the domain of R is the range of R -1  Similart tin an element of
the range of R is the domain of R arly we can prove that



COMPOSITION OF RELATIONS

Suppose that A, B and C are sets, R is a relation from A to B and S is
a relation from B to €. We can define a new relation, the composition of R and
S written as S 0 R The relation S o R is a relation from A to C and is defined
as follows - IExas in Aand z is in C. then x (S 0 R) 7 if and only if for some y
in B. we have X Ry and y R 2.
Suppose R is a relation on a set A ie.. R is a relation from a set A 1o
5

itself. Then R o Riis the comiposition of R with itself and it is written as R and
n-|

R" is defined recursively by R" - R oR.

\

Example. Suppose A { 1,23} B {2.3,6.8,12}.C - {13,17,22}
and R { (1.2), (1, 3). (1.12),(2.3).(2.6), (2. 8).(2. 12) }
S - {(2.13).(2.17).(3,13).(3.22).(8.22) } . FindSoR

Solution
From the definition, we must take each element x in A with each

element z in C and find whether there is an element y in B such that (x. y) € R

and'(y. z) € S.
For example. (1.2) € Rand (2. 13) € S. Then (1. 13) e SoR.

Similarly,

(1.2) e Rand (2, 17) € S. Hence (1. 17) €e SoR.
(I.3) e Rand (3. 13) € S. Hence (l.13) e SoR.
(1.3) e Rand (3, 22) € S. Hence (1,22) e SoR.
(2.3) e R%nd (3. 13) € S. Hence (2. 13) € SoR.
(2.3) e Rand (3., 22) € S. Hence (2,22) e SoR.
(2.8) e Rand (8. 22) € S. Hence(2 2) e SoR.

Hence So R = { (1, 13), (1. 17), (1, 22).(2,13),(2,22) }.
S

R, ] S,

| 13

[ ]

2 17

®

3 23
A

C

Figure 3. Composition Of Relations. S o R.
The above result can be easily obtained from a figure. (see Figure 3.)
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2.16.

Relations A 0B, Sitd

. ! T 0
or ( umpmmon f Id fion. /’.( m

Theor coctative Law T
em . Associathe LSO Suppove R I 41
relation from B 1o C and T ix d pelation from C oD
| (ToS)oR=To(SeR)
Proof  Let (a, d) be an ordered pair in (
This means that there is an element b in B such that
(a, by e R and (b, d) € To S
Since (b, d) € T o S, there exists an element € ntCs
(b, c) € S and (¢, dyeT
As (a.b) € R and (b, ¢) € S, (a, c)e SoR.
(a,c)e SoRand(c,d) €T :>(a,d)eTo(SOR) )
Hence(TOS)ORCTO(SOR) .............
Similarly we can show that 2)
To(SoR)c(ToS)oR
From the inclusion relations (1) and (2), we have that
(ToS)oR=T0(SoR)

Theorem 2
Let A, B and C besets. Risda relation from A 1«

_ﬁmnBtoc_Tmm(s0R5‘=R4084.

Proof Let(c, a) € (So R)_l. Then (a, ¢) € S© R.

This means that there is an element b in B such that (a, b) € R and (b.¢) € S.
- (b, a) € R—1 and (c, b) € S_I.

As (c, b) e]s_l anld (b, 2) € R . (c.a) e R' oS

. (SoR) cR oS (D

-1 -1 -1
Similarly R oS c(SoR) e (2)
From the inclusion relations (1) and (2), we have

a4 1 -
(SoR) =R oS

yBand Sisa relation

LetA=1{a,a, 3 }andB={b, b, ... b_} be two finite sets.

Let R be a relation from A to B. i.e. R c A x B. Then we have seen that R
can be represented by the matrix l\/_lR = (m‘)lu .-

whiote fi ={ l if (a, bj)eR

|
0 lf(atbj)eR
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Relations

| . ' iti two
We obtain the matrices of inverse relation of R and composition of
relations as follows :

I 1 LI
If R ' is the inverse relation of R, then M, M) . where (M) 15 the

transpose of the matrix M.

If R is a relation from A to Band Sis a reldtlon from B to C, where

A={a a, .. a },B={b.b, ..., b }.C ={c,Cn..nC }areﬁmte
sets, let M and M be the matrices representing R and S respectwely We

note that (a c) € S o R if and only there is at least one b e B such that

(a. b)eRand(b c)eS Thus the (i, J) entry in M isone if there 1s

to

one k such that (i, k) entry in M and (K, _|) entry in M are 1. When we

th
scan the i row of M_ and _| " column of M., suppose we come across at

least one k such that (i, k) entry of M = (k, J) entry of M = 1. Then

(i,j) entry of M_ - is one. Otherwise it is zero. If M = @ u)mxp

—(b”)p andM —(z) thenz—max{a b 'k=l2 p} for
all 1 <i < m;l < _] <n The matrix obtained from M, and M, by this

way, is denoted by M, © M. ThusM_ = M O M.

/‘
0110
10110 1001
Forexampleif M =1 01100 and M. =| g1 ¢
00011 1010
L1000
1111
thenMRG)MS= 1101
1010
. th
Note that (I, 1) entryof M, © M =max {a b o k=1,2,3,4,5}
—max{00010}=l
(1, 2) entryofM OM =max{a b :k=123,45}

—max{O 0, l 0 0} =1
Here we introduce another binary operation on Boolean Matrices.
IfM = [a] =[b.], wherea b e {0, 1}, we define a matrix

M VM —[c] wherec —max{a b}



'\

For example, = KIOIO
e o) [o000 1 10|

| 80 g0t ol =000

Loro| foo10 e

|

ortof (ror) X
e mmplcs{ g3 a1 andR={ (12 (1 13 (29,6, 2)
WEL GivenA =11 49

ions on A, find SoR
and S = { (1. 4), (1, 3), @, 3), 3. 1), (4, 1)} are relations on A,

Solution

SoR={(1,3),(1,4),(1, 1),(2,1),(3,3) }.
Matrix Method |

\

/OOO-—X

Matrix MR

0
l
0 and Ms =
0

y

S —_ -
oo o —
S OO O
o O — —

OO O =

[-—-—oo\

Then

MSUR =M GM =

R §

SO — -
oS o oo
S — o —
SO —

SoR = {1, l).(l.3).(l,4),(2, l),(3,3)}.
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¥ ! 3 ‘) ) v E
W E2 Let A | {a b V.o Aer 'R { (a.b). (b. a). (b. b) } and S - { (a, a), (b. a).
(b. b) } be relations on A Find S o Rand R oS ¢ ,

) . ‘onunent on vour result
Solution

R Q
e — A

© OO ®

O

R

T— 2 @

SoR = {(a,a),(a,b), (b, a), (b, b) }
RoS={(a b),(b,a), (b, b) }
We observethat SoR # R o S.

Matrix Method
(o a | 0
MR = Ms =
\l 1 Yy, 1 1
(1 1) 0 1
So MSOR = MROS =
] ] 1 1
. o
So SoR ={(a, a),(a,b), (b, a), (b, b) }, while
RoS={(a b), (b a), (b.b)} | o

WE3 LeeA={1,23,4}.

' Let R={(1,1),(1,2),(2,3).(2.4).3,4),(4.1),4,2) } anq_
S={(3,1),(4,4),(2,3),(24), (1, 1), (1, 4) } be two relations on A.
a) Is(1,3) e RoR? b) Is(4,3) e SoR?

¢c) Is(l,1)e RoS? d) Compute SoR,RoS,RoR,andSoS$

Solution
a)As (1.2) € R and (2.3) € R, we have (1,3) e RoR.
b) As (4, 2) € R and (2, 3) € S, we have (4, 3; & 30 l;
c)As(l,1) e Sand (1, 1) € R, we have (1, 1) € R0 S.
d)) SoR={(1,1)(1,4),(1.3),@21)(2.49, (3,4), (4, 1), (4.3),(:,‘2‘;}
RoS={(,1),(1,2)(24),(@2 1 22) (3, 1),(3.2). (4, l)»(3» X }
RoR={(l, 1), (1,2), (1, 3),(1,4), (2,4), (2, 1), (2,2), 3, D, 3, 2),

4.1),(4,2),(4,3). 4.9 }
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B ] ‘()

l.4)}.
\ 4), (2, 1).(2,4), (1, D). (

S A D3, (d.4), (2, p |
oS ({/m[\ these results by matrix method )
Exercises

o : sI,Zand4ofe'~s
I Find the inverse of the relations given in problem Xercj
b of section 82
b ]

< HWRandS are relations from A to B, show that

| -1 -1
) RNS) =R ns .
i) (RUS) =R us .
i) RS thenR ' c 8

Seg

b LetA= {1,234 andR - LA D L2),2,3), 3, 4) ) 4y
S={(2,3) (2. 1), (4, 3) } be relations onA. FindR o S and S oR. |
4. Two relations R and Son { a, b, ¢ } are given by their matrices M, and |
M. FindRoS§
S
1 l 0 1 1 0
MR= 1 | 01; MS= 1 ] l
0 0 1 0 1 I
1 0 1
5. IfR js given by the matrix MR= 1 1 0| find the
0 1 1
matrices of R o R andRoRoR.
Answers

La) R =23, 4.5, 27.4,7,6,7), 2 9),
(4,9),(6,9, (8, 9) |

b) R‘: ~16.2).310,2), 3,3y 6, 3, (10, 5) )
) R ={g, 3).(2,6),(1.9)}

3 ROS{(,1),(1,3), 3 3,
SOR“{Q4.2.1),2,2) 4}

4' RoS l l l

RoS={(a a),(a"), (a,¢), (b, a), (b, b), (b, ¢), (c, b), (c, ¢) }.



/"NS. EQUIVALENCE RELATIONS

In many of the applications to computer science and applied
mathematics. we are more concerned with relations on a set A then relations
from a set A to a different set B. In this section, we study relations on a set A
especially we study certain special types of relations on A.

First, we note that if A is a set, then { (a, a)|a € A } is also a relation.
we denote this relation by A, and it is called the identity relation on A.

A=1{(a,a):aec A}.

Definitions

A relation h on a set A is said to be

(a,a) e R, forallae A.

(a, a) g R, forallae A.

(a, b) e R = (b, a) € R.
a#band(a.b)e R = (b, a) ¢ R.

(a, b)e Rand (b,c) € R = (a, ¢) € R.
(a, b) e R = (b, a) ¢ R.

i) reflexive if
i) irreflexive if
ii1) symmetric if
iv) antisymmetric if
V) transitive if
vi) assymetric it

Note A relation R on the set A is
1) reflexive if and only if
ii) irreflexive  if and only if
iii) symmetric  if and only if
iv) antisymmetric if and only if
v) transitive if and only if
Definition

reflective, symmetric and transitive.

~ Definition
A relation R on a set A is said to be a par!

reflexive, antisymmetric and transitive.

A relation R on a set A is said to be an cquivalence re

A < R
RNA =¢
R =R
RﬂR—‘C\A.
RoRcCR

lation if 1t 18

ial order relation if it 1s
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s in the Chapter X

al order relation

yore about the partt

Remark. We study 0
reflexive.

he relation R iS not_
ot irreflexive.

(ac A, thent
t(ab) €A x A, then R s

A, then R 18 1
r at least one pas

Note

| Ifta.n) €R for at leas

If (s, ) € R forat leas
If (a. b) € R, but (b, a
not symmetric

tone a €
)¢ R, fo

oy

clidean plane. The relation R on
f*x is congruent

Hiustrations . .
I Let A be the set of all triangles in the Eu . :
A, x Ry ifand only 1

A is defined as follows : for X,y € ) L Pl
to y" This relation is reflexive, symmetric and transitive. So it is ap

equivalence relation.
If relation R

Let A be the set of all straight lines in the Euclidean plane.

and S on A are defined by,
x Ry if and only if ‘x is parallel to y’.

x Sy if and only if ‘x is perpendicular to y’
then R is reflexive, symmetric and transitive ( so it is an equivalence

rela.tion ) w'hile the relation S is not reflexive ( infact, it is irreflexive as no
straight line is perpendicular to itself ), and not transitive, but it is symmetric.

3. Let A={l,2 3,4} and
2: (LD (1, 2), 2, 1), (1, 3), 3, 1), (2, 2), (3, 3)}
Theli g,.l). (1, 2), (l, 3), (2. 1),(2,2),(2.3), 3, 1), (3, 2), (3, 3)}
wiliin, e 5 :; s(ylnu;)etm;,{ but not reflexive (as (4, 4) ¢ R) and also not
. ] » s 3 € s but 3, 2 1 1
transitive, but not reflexive as (4, 4) g( S. P8 % Thelielation 5.6 FIBTIE,

4. Let N be the set of all natur

PN b : ! al numbers, De i
gy 1" ST ol 3 i . b s s s
48 <R butp e ;Ieﬂexwe, transitive, byt not symm f(?smve
and a = mb for gome posiiive(?te ] R mdt.a)e R "=
and n are positive intey :nteger; M 0. Soa= ml; N Hram
gers, a=mpn g implies that m = n= nn;' Asa b m
~ 1. Soa=b, then

(a, b) € R and (b
(ba)e R = 5=} i.e, R is antisymmetr;
c.

i) the relation {() »
(I‘ 2
not transitive L (2, 4)) s not reflex jve not
» Symmetric, and



i) The relation {(1, 1), (2, 2). (3. 3). (4. 4), (1. 3). (3. 2)} is
reflexive, but neither symmetric nor transitive.

i) The relation {(1. 1), (1, 3), (3. 1), (3. 4), (4, 37} is symmetric, but
neither reflexive nor transitive.

iv)  The relation {(1. 1), (1. 3)} is transitive, but neither reflexive nor
symmetric.

v)  The relation {(1, 1), (2, 2). (3. 3). (4. 4), (1. 3). (3. 1). (3. 4),
(4. 3)} i1s reflexive, symmetric but not transitive.

vi) The relation {(1. 1), (2, 2), (3. 3). (4. 4), (1. 3)} is reflexive,
transitive but not symmetric.

vii) The relation {(1, 1), (2, 2), (2, 3), (3. 2). (3. 3)} is symmetric,
transitive but not reflexive.

viii) The relation {(1, 1), (2, 2), (3. 3), (4, 4), (1, 2). (2. 1)} is an
equivalence relation.

6. Let A beanon empty set. Let A ={(a.a):a e A}. Then A is reflexive,

symmetric ( as A = A) and transition (as A 0 A = A). So the identity
relation A is an equivalence relation.

Theorem 3
Let R and S be relations on A. Then

1) if R isreflexive, then R U S is reflexive

2) if R and S are reflexive, then R N S is reflexive.

3) if R and S are symmetric, then RN S and R U S are symmetric.

4) if R and S are transitive, then R N S is transitive.

5) if R and S are equivalence relations, then so is RN S.
Proof

I. if R is reflexive, then A = {{(a,a)|[a € A} cR. SoAc RUS. Then

R US is reflexive.

2. If both R and S reflexive, then A ¢ R and A ¢ S and hence
A cRNS. Thus RN S is reflexive.

Assume that both R and S to be symmetric. Then if (a. b) € RN'S.
then (a, b) € R and (a, b) € S.

As (a, b) € R and as R is symmetric, (b, a) € R.

As (a.b) € S and as S is symmetric, (b, a) € S.

Then (a, b) e RN.S = (b, a) e RN S. So (RN S) is also symmetric.
Similarly, we can show that R U S is also symmetric.

(S
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b,c)ERﬁS. As
e S. we have

Sand RN S g

2. 24
. b), (

o ive, Let (800
and § are WAISEE, TAs (a. b). (0 ©)

4 Assume that |
RS

; 9 e Roweh
(a. b). (b.¢) ¢ R, (@,
(a. ¢) ¢ S Thus (&, b). (b, €) €

also transitive. ) |
. n A, then by (2). (2) and (4), it

i elations ¢
i o alence relatiol )
If R and S are equivale alence olation.

follows that R (1S 18 also an €q

\Note
l.

ply RU S is transitive. For example let

4). (4.3), (4, 4} and 5 - {(2.3),

R and S are transitive need not im
2), (2, 3) e R U S, but

A {1.2.3 4} R- {(1,2),(3,3):(3,
3. 3). G, 4). (4. 3). (4, 4)). Then (I.

(I.3)2 RUS.
= e
= R'I uSs "and (R (1S

= |
2. If R and S are relations, then (R U S) b o
- - : T ion § and ¢
=R | NS | ( see the problem 3 In IExerases in section § 4_|)- R" g"
| , : = «
are symmetric then R =RandS =S. Hence (RN S) . n !
=RNS. SoRNSis also symmetric. In the same way R U S is also

symmetric.

Theorem 4
Let R be a relation on a set A. Then

== .
if R is reflexive, then R s also reflexive.

. . - . " . . .
if R is transitive, then R s also transitive.

l.
2.
~ . . . . —' . .

3. if R is an equivalence relation, then R is also an equivalence

relation.

Proof
I, Rreflexive :AgR:./_\flgR"I::AgR"asA_' =A

_l , )
= R s reflexive.

R is transitive=> RoRc R = (R o R)“IC R

2.
0 By n
= R 0 ' ) =g !
||R c R vas(RoS) =§ oR
= R is transitive.
3. If R is an equivalence relation, thep it is symmetric SoR=R |

-
As R R and R 1s an equivalence relati |
ation, ~RY: :
relation. R (R)isan equivalence
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o
8]
n

') » ale . .
Note.  We can also prove 2 (1 heorem 4) as follows -

If R is transitive, then (a, b). (b, &) e R | b a) (e by < R
) ,a) (C, (S

»(¢c,a) e Roas Ris transitive.
|

>(a,c)e R
|

—» R is transitive.)

Let m be a given positive integer. and N be the set of all natural
numb(?rs. Letx,y € N. We say that x — y is divisible by m if x =y - km for
some mtege‘r k (k need not be a positive integer). 1f x — y is divisible by m.
then we write X =y ( mod m ) and say that x is congruent to y modulo m.
AIlS.O x =y (modm)ifand only if x and y leave the same remainder r when
divided by m. For example we have 7= 5 ( mod 2 ), |7 =42 mod (15).

Worked Examples

W. E l : .Prove Il?cll the relation “congruence modulo m™ over the set of
positive integers is an equivalence relation. (Apr’'97, B. E, MU.).

Solution

_ Let N be the set of all positive integers and m be a given positive
integer. We define the ‘congruence modulo m’ relation on N as follows :

For x,y € N, x =y (mod m)ifand only ifx — yis divisible by m.

(i.e.,x —y=km for some integerk € Z).

Let x,y,z € N. Then
i) asx —x=0=0m. Sox=x( mod m ), for all x € N. Thus this relation

N = S i
i) x=y(modm)=Xx-y~ km for some integer k.
=y —x=(—km.
= y=x(modm)
So the relation is also symmetric.

is reflexive.”

iii) x=y(modm yand y = Z ( mod m )

—x—y=kmandy — 2~ Im for some integers k and L

=>((x—y)t(y— z)=(k+Dm

—>x —z=(ktm

—x=z(modm)askt | is also an integers.

So the relation is transitive.

As it is reflexive, symmetric an

modulo m’ is an equivalence relation.

d transitive, the relation ‘congruence
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2.26 Discrete Mathe

‘ dered pairs of positive
WE2 Let R denote g relation on the set of all ordered p
negery .
N VIR (v i and only if xv = yu.
NOW that R i an equivalence relation. (Nov'96, Nov'97, MC A, M1 / :
Oct'98, BE, M U.; Nov'97, B.E., Bharathi Dasan Uni.)

Solution .

. , e u, v) if and
X,y u, v are Positive integers, it is given that (x. y) R (
only if xv yu.

() Asxy - YX is true for all positive integers x and y, we have (X\IYZ_RH(X{{ Yl)s
for all- ordereq Pair (x, y) of positive integers. So the tefatio
reflexive.

\~
() (x, Y) R (u, V)= xy = yu

= yu=xy
= uy = yx
= (u, V)R (x, y)

SoRis Symmetric.

(i) Let x. Y, u, v, m, nbe positive integers.
(X, ¥) R (u, v) and (u, V)R (m, n)
= XV=yuandun=vm
= Xvun = yuvm
= Xn =ym, by cancelling vu, ( note that uv£0)

=(x,y)R (m, n)
So R is transitive.

As R is reflexive, symmetric and transitive,

it is an equivalence
relation.

W.E3. Leta relation R be defined on the e
are real numbers, x R YS X =-VYisara
relation R is an equivalence relation,
Solution

It is given that

X Ry ifandonly ifx - y s a rational number,

() Asx — x =0 is a rational number for all real numbers X, the relation R js
reflexive.

t of all reql numbers by Xy
tional numpey Show that the
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227,

W LetX Ry Then .

( also & ot hen s =y 7 for some rational number Nowy — x = =715
al m, tonal number  §g Y R X Thuy x R . R x and so R is
symmetric ARY = ¥ and

M ety Ry and y R 70 Then x - v

roandy — 7 1 for some rational
numbers v and 1 Now x -

(X = y) v (y = 2) rotor s also a

rational number. So x R 2. Thus XRyandy Rz 5 xR zand R 15

transitive.
As Riis reflexive. symmetric

: . and transitive, it is an equivalence relation
| Note that 0 is a rational number

A v and r_are rational numbers then roer
and —r are also rational numbers. ] “

Exercises

In pr(.)blel.n l'to 6, let A ={1,2,3, 4} Determine whether the relation R 15
reflexive, irreflexive, symmetric, asymmetric. antisymmetric or transitive.

< R=H,1),(1,2),(2.1),(2,2), (3, 3), (3, 4), (4, 3). (4, 4)}

~

v

%

R={(1,3), (1, 1), (3.1),(1,2), (3,3),(4.4)}

R=4¢.

R={(1.2),(1.3). (3. 1), (1, 1),(3,3),(3.2), (1. 4), (4, 2),
R={(1, 1), (1,2),(1.3),(1,5),(2,3), (4, 4), (4, 2), (4. 3),
R={(1,2),(1,4),(2.1),(2,3),(2,4),(3,2), 4. 1, (4. 2)}
Relations RI, Rz, R} and R4 are defined on N, the set of natural numbers.
as follows :

L. (x,y)eR &x is greater than y

~N QN R D

iil. (x,y) € R <> xisamultiple of y
iil. (x,y) € R & xy is a square of an integer
iv. (x,y)eR &=x+ 3y = 12.

State whether or not each of these relations is
a. reflexive b. symmetric
c. antisymmetric d. transitive.
8 Let L be the set of all straight lines in the Euclidean plane and R be the
relation in 1. defined by
x R y <= x is perpendicular to y.
Is R reflexive? Symmetric? Antisymmetric? Transitive”

9. Give one example of a relation R on A = {1, 2, 3, 4} whichis neither

symmetric nor anti symmetric. _ ric
. . . ) 2 ' eLric,
10. Give one example of a relation R on A = {1, 2.3, 4} which is symme
transitive, but not reflexive.

—
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Lo Letm be o positive integer. Prove that the relation ‘con

M on N, the set of all positive integers, given by . |

N=Yyitand only if x -y is divisible by m:s an equivalence relation
 (APrIT.BLE. MU Apr98. M.CA. MU ) 1

P20 let X {2 ... 7} and R - X y) [ x =y is divisible by 3

gruence Mmody|q,

any prime number P- The inte

}- Shoy,
that R s an ¢quivalence relation. Draw the digraph of R. (9, MCA
M.U)
i Answers
“ iv " i i i tric | Transjt;
Reflexive Irreflexive Symmetric Asymmetric Antisymme ansitiye
| ———Xve | Irreflexiv Ve |
Ll  Yes No Yes No No Yes
2. No No No No No No
| 3. No Yes Yes Yes Yes Yes
4, No No No No No Yes
S. No No No No Yes Yes
6. No No Yes No No No
: 7. 1. antisymmetric and transitjve.
| il reflexive, antisymmetric and transitive
‘ 1. reflexive, Symmetric and transitjye.
| [Ifnisa positive integer, then n can be written in the form. p = ab
i where a, b are positive Integ =
i
l
|

this Property to prove the transitive Property of R |
iv. R= {(,3), (s, 2), (9, D}. Ris antisymmetric and transitjve
? 8. Symmetric only

9. R={(1,2), 2, 1), (2, 4)}
10. One such example is

{(1. 1), 1,2, (1, 3), 2, 1),(2,2), (2,3), 3, 1,3
12.

is one such €xample,

»2), (3, 3)}
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y 6. CLOSURES AND WARSHALL’S ALGORITHM e

[t R 1s a relation on a set AL it may well happen that R may not have
some of the mmportant relational properties such as reflexivity, symmetry.
ransitivity. 1R does not possess a particular property, we may like to find the
anallest relation R' on A so that Rl possesses the desired property and Rl
contains R The smallest such relation R| is called the closure of R with

respect to the property in question. [n this section we deal with the reflexive

closure, the symmetric closure. and the transitive closure of a relation R on a
set A.

REFLEXIVE CLOSURE

Let R be a relation on A. We know that R is reflexive if and only if
the relation A = {(a, a) |a e A} is contained in R. i.e., R is reflexivees A — R.

So if a given relation R is not reflexive, then R N A # A. The relation
R =R U A is the smallest reflexjve relation on A, containing R. Thus the

reflexive closure of a relation R is R U A.

SYMMETRIC CLOSURE

We know that a relation R is symmetric if (X, y) € R (y.x) e R
ie., if R'l ={y.x)|(x,y) e R } =R. LetR be a given relation on A. Any
symmetric relation S on A that contains R should contain R—‘ also. So
RuU R C S, for any symmetric relation S that contains R. As (R U R")—l

-1 -1

“RUR RUR itselfisa symmetric relation on A, containing R. Thus the
, "y

Symmetric closure of R is R U R

TRANSITIVE CLOSURE

Let R be a given relation on A. As A x A ttself is a transitive relation
ains R, the smallest transitive relation R|‘ that contains R exists. The

relation RI IS the intersection of all transitive relations on A that contain R.

that cont
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.4} and R and R be the relations on A iven p,
) { '
l cl '.\ { |‘ by |

) J
SR and R, {(1. 20 (2:2)-(2.3). 3, 2) 4 1)

R {1 Do 2 (234
(4. 4)} then _ A
oflevive closure of R R U A,
| mu\.u{(“« D22 B U 1).«2‘3).4(3.3;, .4y
N 2.3).03.4)
{u.n.<2‘2).(3.3),(4.4).(1.2|).( 3).(3.4))

ii. the symmetric closure of R =R U R, o
O 02023, GeAF UL D210 03.2). 43,

=L (1 2)0(203), (3,4). (2, 1),(3.2).(4.3)}
ii. the reflexive closure of R3 = R2 Ua

={(1.2).(2.2),(2.3).(3.2). (4. ). 4. D} U{(1. 1), 2.2)

(
={(1.1),(2.2),(3, 3), (4. 4), (I, 2?, (2,3).(3,2),
Iv. the symmetric closure of R2 = R2 U R2

={(1.2).(2.2),(2,3),3,2), (4. 1), (4. )}
U{2.1).(2.2),3,2),(2,3), (1. 4), (4. 4)}
“{(1,2), 2. 1,(2.2),2,3),(3,2), (4. 1), (1. 4), (4. 4))
Before explaining how to find the transitive closure of a relation R, [et
us have a close look on the relation R'.

Let R be a relation on the set A. Then we can find R” = R o R,

3 2 n n-1 2

R=RoR ..R=R o R, etc. We recall that (a, b) € R if and only if
there is an element ¢ € A such that (a, ¢) € R and (c. b) € R. In fact
(a.b) e Rn if and only if we can find a sequence Xp X, X | in A such that
(@ x). (x, X\ (X L (x . b)are all in R The elements
XX, ...X  meed not be distinct. The sequence a, Xp Xy oo X b is said a
chain of length n from a to b, in R, if (a, X)eR (x,x ) e R (x .b)

[ T YO

., are called interna] vertices of this chain. If
RS b is chain from a to bin R, and if th

are all distinct (elements of A), then the chain is said
R.

€ R. The elements XX o X
a. X e elements LI W

n-l

to be a path from a to b in

Leta,b e A Ifthere is 3 chain from a (o b,

, in R we say thata R b.
Thus R 15 a relation on A defined as R ={@b)ea XA|3x. x ¥
‘ I\ ‘ -‘q LEEREIY

n-1

e A, for some n, sucI} that (a, X,), (X.x), .

. N »b) € R}. Then clearl,\/R‘
3 ‘ N
“RUR UR ... UR '

k=)
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Theorem §
N\ Let Abeaset with| A | nandR be a relation on A. Then

R RURU.. UR"
Proof  Let(a, b) € R Then there is a chain from a tobin R. Leta, x,
Ky vees By 1 b be a shortest chain from a to b in R, (i.e., for any other chain a,

Y ¥y v ¥, b fromatobin R, we have m > k — 1). We claim that the

internal vertices Npo Xy X, are all distinet. If x = x for some | <1< <
> ) X

k —1, then as (x. X )= (X, X,) € R, we observe that a, x, ... x, X,

X ... bisalso achain fromato b in R, ( see Figure 4). But the length of

e
this new chain is smaller than that of the shortest chain from a to b, which is a

contradiction. Thus the internal vertices XX, o X are all distinct.

a X, X X=X X b

i+2

Figure 4 : A chainfromatob. (Here ue—>»ev means (u, v) € R).

We also observe that a # X, foralli=1,2, ..., k—1. Forifa= X for some 1,
p b is shorter than shortest chain from a to b, which is

then a, X, p s X
 are all distinct elements of A. As

k
again a contradiction. Thus a, X Xy i X

| A|=n, we have k < n. So the shortest chain a, Xp Xy oon X from a to b in

: k
R is of length < n, and hence (a, b) € R for some k < n. Hence
R"cRUR U...UR".

AsR’ =UR‘ Uit follows thatR =RUR U ...UR .
b=l

Remarks

I. We have proved in the above theorem that if (a, b) € Rm, then there iIs a
patha,x,..,x ,bfromatob inR, for somek <n.
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R be a relation on A. It may happen thy
¢

Let A be a set with | A | = n and

" m R
ifl<me<nR # ‘ﬂﬂdR N
if 1 <m<n “4?2.“_‘“} and R

|

b ykeme {23 . n} For
d”{(l’ 2),(2,3),(3,4), ... (n=1 n)
- {1, mH), (2, m+2), ..., (n, m)

1 + r is taken modulo n). Hence it jg
he result given in Theorem §.

example Let A

m
(n. 1)} be a relation on A. Th'c!l R
forall m = 1,2, 3, ..., n, (addition n

tad ]

' 21 TS ant
not possible to obtain a stronger result th

s f a relation R.
Now we have a theorem on the transitive closure ofa

h Fheorem ¢ itive closure of R
Let R be a relation on a set A. Then R is the transitive closu .

Proof RcR follows from the definition of R .

Now we claim that the relation R is transitive.

Let (a, b), (b,c) € R ‘ _

Then we have a chain a, Xp Xy .y X, bffomatobinR and a chain b, Y,

¥y .cforbtocinR. Thena, Xp Xy, oon X b, YpYp-n Y ,Clisa chain
- m Z &

fromatobinR. So(a,c) e R”. Thus (@, b),(b,c)eR =(a,c)eR . ig,
the relation R is transitive.

Now to show that R is the smallest tramsitive relation that contaius R,
consider a transitive relation S on A, such that R c S. Simge S IS transitive, we

have S’ c S, in otherwords. S c S for all positive integers n,

AsRcS,R c§ for all positive integers n. Thus R' — S for all

n=1,2, ... and soUR" 8 .
k-1

e, R cS. Hence R iS the smallest transitive
relation that contains R.

Remark. IfAisafi

fite setand | A ] =n, and R s a relation on A, then
by theorems 5 and 6,

R the transitive closure of R = R UR U...ur"
Note that (i) M., ~M, O M, Ma=M 0 M. OM et
g tC.

. -‘h "

(i) i.j element 'of M, © M, is equal to | if and only if row i of M,
and column j of M, have a I 'in the Same relative position k, for
some k.

. th .
(iii) i, j element of M, v M, -

, . h
max {(i. j) " element of M., G, j)th
element of m } )



 S—

So if MR Is the matrix of R, then the matrix MR’ is given by the
relation MR, MR vV MR- V... .UM

ph
\

|
_# Worked Examples

& e Lec A {205 and R 1), (1, 3).(2.3). (3. 4). (4. 1). (4. 2)}.
Fmd the transitive closure of R

Solution \ - .
1010 ,
0010
M :
R 2 0001 ‘
1100
1010 1010 KERE
001 0 0010 001 I
MM OM =1t 0001 |90001 | 1100
1100 1100 1010
\‘31\‘\\
HER ERER
M.=| 1101 M,=| 1110
R* R
1010 101 |
101 1 NER
1111
. EREEN
My = M VM VM VM= |
/ R
SoR =AXxA.

W% Let A={1,2,3,4} and R be a relation given by its matrix

M -

| 0

I
I

00

0

o — o O

I
0
0
I

(

N’

Find the transitive closure of R.
Solution

i > 3 i
As| A| =4, the transitive closure R ~"RUR UR UR.
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Now )
1 00 |
1100
M footo
000!
0 1001
1001 {?00 ; 1103 M,
M,s (‘)(I)(l)g © 1o010 88(;]
0001 000 :

- M =M.
As MR3 MR. we have MR; = MRz O MR MR O Mg R

MRJ :MR:O MR:MRO MR:MR y
Hence MR, :MRVMRZ\/MR;\/ ot
SoR =R.

~M, VM VM VMM

Remark. 1fR = R forarelation R, thenRisa transitive relation. In this case

R =R is transitive.

WE3 LetA- {1.2.3.4) andR = {(1,2),(2,3).(3,3). 3. 4). (4, 2)}. Find

(WS

the transitive closure of R.
Solution

0100
M-10010
Ro10011
0100

0100 0100 0010

Mo MoM = [0010 1510010 o001

. 0011 001 | 0111

0100 0100 0010

0010 0100 0010

Mo M.OM 0011110010 0110

011 001 1| o

0010 0100 001 |



Relationy 2.35.

0010 0100 0011l

O1rt1o0l [oot1o 001

My M ©OM, o111 oo o111
|

0010 0100 0 |

Me. M VMOVM VM

0100 0010 0010 0011
10010 001 1 0110 0011
. v \
0011 0|||v0|ll 0111
0100 0010 0011 ‘0111
01 11

0111

01 11

0111

So R ={(1.2),(1,3), (1, 4), (2. 2). (2. 3). (2. 4). (3. 2). (3. 3). (3. 4).
(4,2), (4.3). (4, 4))

WARSHALL’S ALGORITHM

Let us now describe Warshall’s algorithm, which is a more efficient
algorithm for computing transitive closure of a relation.

Let A={a.a, .. a} andR be arelation on A. Now for each k,

. . . lh
| <k <n, we define a matrix W, as follows : The matrix W hasa lin(, j)
position if and only if there is a cham from a to a in R whose interior vertices

(if any) come from the set {a a,. } (1.e., elther (a ai) € R, or there is a

chain a . XX, .a tromd toa in R such that x . S X €{a.a

m -
a }. We note that W M WL dehne W _to be M . we compute W, from

W, as follows :

Let W - “It.] and LA 1 lft = 1, then there must be a chain
from a to a in R whose lntenor vertlces come from the set {a a, } So

we can obtam a path, (whose interior vertices are all distinct), from a to a in R,



——————
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Solution
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t an interior vertex
Ifa is nO
4 d
whose interior vertices are from {" t thz Palh mUSl actually COm; ﬁ:m
. inte ruccs 0 his path, then
of this path, then .\II the Tlumr Vlc Ifa, is an interior vertex of this p
the set H{a,a, ...a } Sos -

all other interior
rior vertex and
A appears unlx once in this p(\th as an inerior

vertices come from {a a. ..., ,}- o and —
If the path is B X Ky X K Xy e K

X ,aare paths from a
X con
sub paths a N Xpea XX = and a, = X, X » m’

ese subpaths are
to 4 and a tn a respectlvely Also the mtenor vertices of th p
from{a| a, ..A,aM},

ak
2
Subpath | ubpath
a a

Sos -lands —I

Thent =] lfand only if either s, = Lor s, = | and Sg = 1. Thus we
have the followmg procedure for computmg W from W

Step I : First transfer to W all 1’s in W
Step2 : List the locations PP,
I and the locationg q,.9,
Step 3

, in column k of W v, Where the entry is

.inrow k of W , Where the entry is |.
. Put | in alI positions (p, q)ofW

This procedure is known as Warshall s algorithm.

Worked Examples

WEI Let A={l, 2 3 4} and R

e “1L2),2,3), 3,4, 2,
Warshall's algorithm find the

R D}. Using
transitive closyre of R

0
0
LetW =M, |
0

010
101
000
000
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As | A | -4 We have to compute W, W, W, and W,. W, is the

matrix of the transitive closure R
To compute W| :

Here k = |.
First let (W')'l | whenever (Wo)a. =1,

WO has |'s in location 2 of column | and location 2 of row |. So WI will have

I in position (2, 2).

010
w=| 111
1000

000

O = O O

To compute W _:
Here k = 2. Consider column 2 and row 2 of W|. The matrix WI has 1’s in

location 1 and 2 in column 2, while it has 1’s int locations 1, 2 and 3 in row 2.
So Wz will have 1 in (1, 1), (1,2), (1, 3), (2, 1), (2, 2) and (2, 3) positions.

To compute W_ :
Here k =3. Consider column 3 of W2 and row 3 of WZ.

The matrix W2 has 1’s in column 3 in locations 1 and 2 and it has 1| in row 3 in
location 4 only. So W3 will have 1’s in (1, 4) and (2, 4) positions.

W =

3

1111
1111
0001
0000

To compute WJ ;
Here k = 4. Consider column 4 of W1 and row 4 of W}. The matrix W3 has I’s

in column 4 in I, 2, 3 locations, and it has no | in row 4. So there is no new
addition of 1. So W4 = Wz.

As W is the matrix of R, the relation R is given by

R™={(1,1),(1,2), (1. 3), (1,4), (2, 1), (2, 2), (2, 3). (2, 4). 3. 9 }.
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WED LetA (1,234,585} and | 2),(4,4),(5, 4y} |,
B DA D109, 20,24, 0.0, 6.5 (4.2, (4 4.5, 4)) g,
the ransitive closure of R
Sodution TO0O1 0|

00110
Wo Miloo 0
01010
00 0| 9)
hw W, has I's in v,
1 k-
k Position of 17 n Position of 1's in
column k row k |
1| 1.3.5 (1,D),(1,3),(1,5) (1 010 1\
0011 ¢
0010
01010
\0 0010
> T3 34 (43)(a4) 1 ot1o) |
00110
0010 ]
0111090
\0 00 1] 0)
3 11234 3,5 (1,3),(1,5) K‘l 010 ,\
(2,3),(2,5) 0011 |
| K0 00 1 0)
— |
4 245 23,45 (2.2)(2,3),2.4),2,5) (10101
(4v2)s(4v3)1(494)’(4v5) 0 ] l l 1
(5‘2)7(5$3)a(5\4)\(5‘5) 0 O l O ]
0111 ]
011 Q
5 112345 2345 (12(13),(1,4)(135) g A
(2.2),23) 24,205 [ V1111
(3.2),33),34),35) || 01 111
(4.2).(43),(4.4) a5y || 01 1 1 1
G20(83)(5.a) 5559 || O 111
el 011 | 14
e ]
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R (OLDLL2) (30 (1), (1.5),(2,2),(2,3),(2,4), (2, 5)
(3.2). (3. 3). (3.4). (3. 5). (4, 2), (4, 3), (4, 4), (4, 5)}

Exercises

» D) o1 2 &7 | A 4o
I Let A {12 3, 4}. Find the reflexive, symmetric and transitive closures
of the following relations :

a. R {(1.1).(2.2).3.3)}

b. R ={(1.1).(23),(3.2).(4, )

¢. R {(1.3).(1.4).(2,2),(3.4).(4,2)}
d. R - {(1.2).(2.4).(3,3).(4, 1)}

2. Using Warshall's algorithm find the transitive closure of the relations
whose matrices are given below :
a b. 11000
1011 11000
M=|0100 M =l 00110
" (o000l “loo111
1000 00011
C. 1 001 d. 1001
0101 0101
M= | 0001 M=l ooo
0001 1000
Answers
La. {(1,1).(2.2).(3,3). 4, 4)}. R,R
b.i. {(1.1).(2.2). 3. 3), 4, 4), (2.3).(3,2), 4, D}
i {(1. 1).(2.3), (3, 2). (4. 1). (1, 4)} -
. b. 1100 a
a. .
101 I\ 11000
w-10100 W =M, = ool 11
! 101 1 £ 00111
1011 CLARRY

()

<

|

T
::oo-\
oo —- O
-~ OO
o

>3

=

l
)
co — <
co o O
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Y7 PARTITIONS AND EQUIVALENCE CLAS

Consider 7, the set of all integers,
v 1N € Z[xis a positive integer }
A {xezix<-100)
A {xez| =100 < x < 0 and x is divisible by 2 }
' i ivisible by 2 }.
A {xez| —100<x<0andxisnotd ST
Then the subsets A A, A and A are mutually disjoin
Z. In otherwords,

o W
Z=AIUA,UA3UA4andA|ﬂAi=¢,V|¢Je{1,2,3,4} e
Sy that P = {Au‘ A, AJ, A4} is a partition of the set Z.

let A

Definition

Let X be a non-empty set. A collection P of non-empty subsets of X
1s said to be a partion of X if

1) AeP=sAx ()

i) A,BePandA¢B:>AﬂB=¢

iii) X=U A

AeP

The members of P are said to be the ‘blocks of the partition P’

In this section we show that given an equivalence relation on a set X,

We can associate 3 partition on X, and conversely a gjven partition P of X
determines an equivalence relation on X

EQUIVALENCE CLASSES

Let R be an equivalence relation defined on 5 non-empty set X. Then
o a e X, define a subset R(a) of X by

R(a)={xeX|(a,x)eR}

The subset R(a) is called the equivalence class of R dete

| . rmined by the
element a. The equivalence clagg R(a) is also denoteq by [a]R.

PROPERTIES OF EQUIVALENCE CLASSES

Let R be an equivalence relation o a non
I. R(a)#¢,forallae X,

As the relation is reﬂ‘exive, (a, a) € R, for al| a € X, hence 5 € R(a),
for alla e X. ThenR(a) # ¢, forall x e X

-Cmpty set X Then



7 b e R(a)=>ae Rb) : c R,as R
) nieh th - R(a). Then (a,b) € R. So (b, 2) ’
Leta.b e X such that b e R(a). I'hen L Ria) = @ € R(b), where

1S symmelric. Hence a ¢ R(b). I'hus we have

a.be X

b e R(@) => R(b) R(a).
Let a, b e X such that b € R(a).

Let ¢ € R(b). Then (b, ¢) € R. As

Then (a, b) € R and hence
(a,b) € R and (b, ¢) € R, by
rtv of R, we have (a. ¢) € R. Soc € R(a). Thus b € R(a),
' In other words, if b € R(a), then R(b) < R(a). As
have R(a) c R(b). Thus we have R(b) = R(a).

&)
d.

(b.a) ¢ R.
the transitive prope
and ¢ € R(b) = C € R(a).
b € R(a). a € R(b). Hence we

4 Ifa. b e X.then either R(a) N R(b) = ¢ or R(a) = R(b).

It is enough to show that if R(a) N R(B) # ¢, then R(a) = R(b')-
Assume that R(a) N R(b) #¢. Asc € R(a), by (3), we have R(c) = R(a). Again
as ¢ € R(b), we have R(c) = R(b). Thus R(a) = R(c) = R(b). Thus ifa, b € X

and R(a) N R(b) # ¢, then R(a) = R(b).
Now we have the following theorem.

Theorem 7
Every equivalence relation R on a non-empty set X determines a

unique partition on X, whose “blocks” are equivalence classes of R.
Proof Let R be an equivalence relation on a non-empty set X. Let P be the
collection of all equivalence classes of R. ie,P={R()|ae X} Thenwe
note that
i) each element of P is a non-empty subset of X. (asa € R(a), for all ae X).
ii) If R(a) # R(b), then by the properties of equivalence classes, we have

R(a) N R(b) = ¢.
iii) Ifx € X, then x € R(x). So X =U R(a).

ae X

Thus

a. every element of P is a non-empty subset of X.

b. any two distinct elements of P are disjoint.

e, X is a union of members of P.
So P is a partition of X. As each block of this partition is of the form R(a) for
same a € X, each block of P is an equivalence class of R.

| This partition P, whose ‘blocks’ are equivalence classes of R, is

unique as an R - equivalence class of any element is unique. ® ,



121507t (VIQARRER Paatast Rad

: ivalence relation R
Remark. The unique partition P as X determined b)’Raﬂ pauya
on X is denoted by X [ R It is also called X modulo R.
YR e }‘ ion P on X determines an
The following theorem shows that a partition P «

equivalence relation R on X

Theorem 8 Then there is an

Let P be a partition on a non-empty set X.

®quivalence relation R on X such that P=X | R. _
Proof  Let P be a partition on a non-empty set X. Define a relation R on X

as follows: )
aR b ifand only if a and b are members of the same block.

Le.aR b a be A for some A € P. We claim that R is an equivalence
relation
. As X =AUP A. given any a € X, we can find one A € P such thata € A.
SoaRa ThusaR a forallae X, je., R is reflexive.
2. IfaR b, thep a,be AforsomeA cP So bR ais also true.
~aRb=bRa ThusR s symmetric.
I. IfaRbandbR ¢, then a, b are in some block A of P and b, ¢ are in some

block B of P. So b ¢ A NB. As members of P are mutually disjoint, from
be ANB wehavea=b, So a, b, c are all in the same block A of P. As a
and c are in the same block of P, we have aR c. ThusaRb,bRc=aRc
i.e, R is transitive. We have proved that R is an equivalence relation on
X. Leta e X. Thenajs an element of exactly one block A of P. If
b e A, then as a and b are in the same block of P. we have a R b. |f
b ¢ A, then there is no block of P containing both a and b ( as blocks of P
are mutually disjoint ); so (a, b)¢ R. ThusaRb iffbe A.
SoR(@a)={beX [(ab)e R} =A Hence the equivalence class of

R are the blocks of P and P = X | R.

Worked Examples »
WEL Let A=1{l,2 3 4. Let P={ {1}, 12, 413 Y Kind the
equivalence relation R on A determined hv the partition p

Solution
The block of P are {1}, {2, 4} and {31 If R is the equivalence

relation determined by P, then to each elementa e A, only the elements of the
block in which a is an element, are related to aunder R. Sg a5 | ¢ (1}, we

have (1, 1) € R.



]
WeE:; let A {1,2,3 4
Partition oy A Find the ¢
Solution

Let R be the re
' lermine by ¢, it
¢ elements 1, 5 4 | ¥ € partition p. A

. 3,6} is a block of P,
(2.2).2,3),2,6), (3,2),3,3),3,¢) (6, 2

i »(6,3) and (6,
'S a block, (4, 4) ¢ R ) (6, 3) and ( 6) € R

que partition P on A = {1,234, o} determined by the
equivalence relation R, where

R=11.1,01,3, 015, 0 2.2.9.3,1,33),3 ), (4,2),(4,4), (5. 1)
3.3, 5)
Solution

Now R(1) = {1, 3, S5} and R(2) = {2, 4}
Note that R(1) = R(2) = R(5) and R(2) = R(4).
The partition P is { {1, 3, 5}.{2,4} )

W.E4. Find the unique partition determined by the equivalence relation R
whose digraph is given below :

Solution

O

4

P={ {124}, {36}, {5}}



piscrele Mathematics
. ~yis Jivisible by 7 b
If it is an equivalence

0 IH(/R ]
100 ¢ Jation OF ”(;’Apr'g 7 BE.MU)

¢ re

BWES et N {I,Q.J... l

] ' Nne
Determine whether R is an equivd ‘R
relation, determine the partition XK

~ or all x € X
Nolution x) € R, f

Asx — x 0 is divisible by 7. fof all x € x. (%
and hence R is reflexive.
If (x.y) €.R, then .
integer m. Soy — x = 7(=m) andy — X '? d
(x.y) € R=(y,x) € RandR is symmetric. o andy - 27 7k for some
If (x,y) € Rand (y, 2) € R, then X = y= o o x—2z=Tm*+k)
integers m and k. Now (x = y) + (¥ — 2)=T(m+Kk. I .,e 2 eR
and x — y is divisible by 7. Thus (x,y) € R and (¥, 2)
and so R is transitive.
| As the relation R i l e
equivalence relation. The equivalence classes
[ﬁ ={ 1,8, 15, 22, 29fI 36, 43, 50, 57, 64, 71, 78, 85, 92, 990 }
21 = { 2,9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 10 }
" 38, 73, 80, 87, 94 }

K-y = 7m for some
€.

X — yis divisible by 7.1 ) e R. Then

ivisible by 7 je.,(y. X

, - i
s reflexive, symmetric and transitive, it Is

[3] = { 3,10, 17, 24, 31, 38, 45, 52, 59, 66,

[4] = { 4,11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95 }

[5] = { 5,12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 92 }

[6] = { 6,13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97 }

[7] = { 7,14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98 }
So P=X|R={[1],[2].[3], [4], [5], [6].:[7] }

Exercises

I. Let m be a positive integer. Define a relation R on N, the set of all
positive integers, by X R y < x = y ( mod m ). Find the equivalence
classes of R.

2. Which of the following are partitions on A = {a, b, c}.

) {{a}, {b}, {c}} i) {{ab}, {ac}}
iii) {{a,b,c}} iv) {{ab}, {c}}
v) {{a}, {b}} vi) {{a}. {bc}, ¢ }.

3. Find all partitions of the set A = {a,b,c}.

. (Dec’96, M.C A. ; -
4. Find all partitions of the set A = {a.b.c.d}. A.. Bharathiar Uni.)

5. Find the equivalence relation induced by the partition {{1}, {2 3). {41}
of S = {1,2,3,4}. (Apr'97, B.E.. Bh - B e
6. LetA-{1.2,3,4}and - Bharathi Dasan Uni.)
R={(1.1),(1,2), 2, 1), (2, 2) (3. 4). (4 -
that R is an equivalence relation. Determine A)|’ 1({ 3). 3, 3), 4, 4) }. Verify

7.+ Show that an equivalence relation i
| , induces a iti iti
induces an equivalence relation (Dec’98 Ianétlo& 8“;1 ° parttion
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