
Year Subject Title Sem Sub Code

2018 -19

Onwards
Core: COMPUTER FUNDAMENTALS

AND C PROGRAMMING

I 18BIT13C

UNIT V: Pointers: Understanding pointers - Accessing the address of a variable -

Declaring and initializing pointers - Accessing a variable through its pointer - Pointer

expressions -Pointers and arrays -Pointers and character strings - Pointers to

functions - Pointers and structures.

File Management in C- Defining and opening a file -Closing a file - Input/Output

operations on files - Error handling during I/O operations -Random access to files -

Command line arguments.

TEXT BOOK

1. E Balagurusamy,” Computing Fundamentals & C Programming” -

TataMcGraw-Hill, Second Reprint 2008, ISBN 978-0-07-066909-3.

Prepared by P.Sundari.

Pointers

Pointers in C are easy and fun to learn. Some C programming tasks are performed

more easily with pointers, and other tasks, such as dynamic memory allocation,

cannot be performed without using pointers. So it becomes necessary to learn

pointers to become a perfect C programmer. Let's start learning them in simple and

easy steps.

As you know, every variable is a memory location and every memory location has

its address defined which can be accessed using ampersand (&) operator, which

denotes an address in memory. Consider the following example, which prints the

address of the variables defined −

#include <stdio.h>

int main () {

 int var1;

 char var2[10];

 printf("Address of var1 variable: %x\n", &var1);

 printf("Address of var2 variable: %x\n", &var2);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var1 variable: bff5a400

Address of var2 variable: bff5a3f6

What are Pointers?

A pointer is a variable whose value is the address of another variable, i.e., direct

address of the memory location. Like any variable or constant, you must declare a

pointer before using it to store any variable address. The general form of a pointer

variable declaration is −

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is

the name of the pointer variable. The asterisk * used to declare a pointer is the same

asterisk used for multiplication. However, in this statement the asterisk is being

used to designate a variable as a pointer. Take a look at some of the valid pointer

declarations −

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

The actual data type of the value of all pointers, whether integer, float, character, or

otherwise, is the same, a long hexadecimal number that represents a memory

address. The only difference between pointers of different data types is the data type

of the variable or constant that the pointer points to.

How to Use Pointers?

There are a few important operations, which we will do with the help of pointers

very frequently. (a) We define a pointer variable, (b) assign the address of a variable

to a pointer and (c) finally access the value at the address available in the pointer

variable. This is done by using unary operator * that returns the value of the variable

located at the address specified by its operand. The following example makes use

of these operations −

#include <stdio.h>

int main () {

 int var = 20; /* actual variable declaration */

 int *ip; /* pointer variable declaration */

 ip = &var; /* store address of var in pointer variable*/

 printf("Address of var variable: %x\n", &var);

 /* address stored in pointer variable */

 printf("Address stored in ip variable: %x\n", ip);

 /* access the value using the pointer */

 printf("Value of *ip variable: %d\n", *ip);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var variable: bffd8b3c

Address stored in ip variable: bffd8b3c

Value of *ip variable: 20

NULL Pointers

It is always a good practice to assign a NULL value to a pointer variable in case

you do not have an exact address to be assigned. This is done at the time of variable

declaration. A pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard

libraries. Consider the following program −

#include <stdio.h>

int main () {

 int *ptr = NULL;

 printf("The value of ptr is : %x\n", ptr);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

The value of ptr is 0

In most of the operating systems, programs are not permitted to access memory at

address 0 because that memory is reserved by the operating system. However, the

memory address 0 has special significance; it signals that the pointer is not intended

to point to an accessible memory location. But by convention, if a pointer contains

the null (zero) value, it is assumed to point to nothing.

To check for a null pointer, you can use an 'if' statement as follows −

if(ptr) /* succeeds if p is not null */

if(!ptr) /* succeeds if p is null */

Pointers in Detail

Pointers have many but easy concepts and they are very important to C

programming. The following important pointer concepts should be clear to any C

programmer −

Sr.No. Concept & Description

1 Pointer arithmetic

There are four arithmetic operators that can be used in pointers: ++, --, +, -

2 Array of pointers

You can define arrays to hold a number of pointers.

3 Pointer to pointer

C allows you to have pointer on a pointer and so on.

4 Passing pointers to functions in C

Passing an argument by reference or by address enable the passed argument to be

changed in the calling function by the called function.

5 Return pointer from functions in C

C allows a function to return a pointer to the local variable, static variable, and

dynamically allocated memory as well.

https://www.tutorialspoint.com/cprogramming/c_pointer_arithmetic.htm
https://www.tutorialspoint.com/cprogramming/c_array_of_pointers.htm
https://www.tutorialspoint.com/cprogramming/c_pointer_to_pointer.htm
https://www.tutorialspoint.com/cprogramming/c_passing_pointers_to_functions.htm
https://www.tutorialspoint.com/cprogramming/c_return_pointer_from_functions.htm

Pointer arithmetic

A pointer in c is an address, which is a numeric value. Therefore, you can perform

arithmetic operations on a pointer just as you can on a numeric value. There are

four arithmetic operators that can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer which

points to the address 1000. Assuming 32-bit integers, let us perform the following

arithmetic operation on the pointer −

ptr++

After the above operation, the ptr will point to the location 1004 because each time

ptr is incremented, it will point to the next integer location which is 4 bytes next to

the current location. This operation will move the pointer to the next memory

location without impacting the actual value at the memory location. If ptr points to

a character whose address is 1000, then the above operation will point to the

location 1001 because the next character will be available at 1001.

Incrementing a Pointer

We prefer using a pointer in our program instead of an array because the variable

pointer can be incremented, unlike the array name which cannot be incremented

because it is a constant pointer. The following program increments the variable

pointer to access each succeeding element of the array −

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have array address in pointer */

 ptr = var;

 for (i = 0; i < MAX; i++) {

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 /* move to the next location */

 ptr++;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var[0] = bf882b30

Value of var[0] = 10

Address of var[1] = bf882b34

Value of var[1] = 100

Address of var[2] = bf882b38

Value of var[2] = 200

Decrementing a Pointer

The same considerations apply to decrementing a pointer, which decreases its value

by the number of bytes of its data type as shown below −

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have array address in pointer */

 ptr = &var[MAX-1];

 for (i = MAX; i > 0; i--) {

 printf("Address of var[%d] = %x\n", i-1, ptr);

 printf("Value of var[%d] = %d\n", i-1, *ptr);

 /* move to the previous location */

 ptr--;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var[2] = bfedbcd8

Value of var[2] = 200

Address of var[1] = bfedbcd4

Value of var[1] = 100

Address of var[0] = bfedbcd0

Value of var[0] = 10

Pointer Comparisons

Pointers may be compared by using relational operators, such as ==, <, and >. If p1

and p2 point to variables that are related to each other, such as elements of the same

array, then p1 and p2 can be meaningfully compared.

The following program modifies the previous example − one by incrementing the

variable pointer so long as the address to which it points is either less than or equal

to the address of the last element of the array, which is &var[MAX - 1] −

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have address of the first element in pointer */

 ptr = var;

 i = 0;

 while (ptr <= &var[MAX - 1]) {

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 /* point to the next location */

 ptr++;

 i++;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var[0] = bfdbcb20

Value of var[0] = 10

Address of var[1] = bfdbcb24

Value of var[1] = 100

Address of var[2] = bfdbcb28

Value of var[2] = 200

C - Array of pointers

Before we understand the concept of arrays of pointers, let us consider the following

example, which uses an array of 3 integers −

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i;

 for (i = 0; i < MAX; i++) {

 printf("Value of var[%d] = %d\n", i, var[i]);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of var[0] = 10

Value of var[1] = 100

Value of var[2] = 200

There may be a situation when we want to maintain an array, which can store

pointers to an int or char or any other data type available. Following is the

declaration of an array of pointers to an integer −

int *ptr[MAX];

It declares ptr as an array of MAX integer pointers. Thus, each element in ptr, holds

a pointer to an int value. The following example uses three integers, which are

stored in an array of pointers, as follows −

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr[MAX];

 for (i = 0; i < MAX; i++) {

 ptr[i] = &var[i]; /* assign the address of integer. */

 }

 for (i = 0; i < MAX; i++) {

 printf("Value of var[%d] = %d\n", i, *ptr[i]);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of var[0] = 10

Value of var[1] = 100

Value of var[2] = 200

You can also use an array of pointers to character to store a list of strings as follows

−

#include <stdio.h>

const int MAX = 4;

int main () {

 char *names[] = {

 "Zara Ali",

 "Hina Ali",

 "Nuha Ali",

 "Sara Ali"

 };

 int i = 0;

 for (i = 0; i < MAX; i++) {

 printf("Value of names[%d] = %s\n", i, names[i]);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of names[0] = Zara Ali

Value of names[1] = Hina Ali

Value of names[2] = Nuha Ali

Value of names[3] = Sara Ali

C - Pointer to Pointer

A pointer to a pointer is a form of multiple indirection, or a chain of pointers.

Normally, a pointer contains the address of a variable. When we define a pointer to

a pointer, the first pointer contains the address of the second pointer, which points

to the location that contains the actual value as shown below.

A variable that is a pointer to a pointer must be declared as such. This is done by

placing an additional asterisk in front of its name. For example, the following

declaration declares a pointer to a pointer of type int −

int **var;

When a target value is indirectly pointed to by a pointer to a pointer, accessing that

value requires that the asterisk operator be applied twice, as is shown below in the

example −

#include <stdio.h>

int main () {

 int var;

 int *ptr;

 int **pptr;

 var = 3000;

 /* take the address of var */

 ptr = &var;

 /* take the address of ptr using address of operator & */

 pptr = &ptr;

 /* take the value using pptr */

 printf("Value of var = %d\n", var);

 printf("Value available at *ptr = %d\n", *ptr);

 printf("Value available at **pptr = %d\n", **pptr);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of var = 3000

Value available at *ptr = 3000

Value available at **pptr = 3000

Passing pointers to functions in C

C programming allows passing a pointer to a function. To do so, simply declare the

function parameter as a pointer type.

Following is a simple example where we pass an unsigned long pointer to a function

and change the value inside the function which reflects back in the calling function

−

#include <stdio.h>

#include <time.h>

void getSeconds(unsigned long *par);

int main () {

 unsigned long sec;

 getSeconds(&sec);

 /* print the actual value */

 printf("Number of seconds: %ld\n", sec);

 return 0;

}

void getSeconds(unsigned long *par) {

 /* get the current number of seconds */

 *par = time(NULL);

 return;

}

When the above code is compiled and executed, it produces the following result −

Number of seconds :1294450468

The function, which can accept a pointer, can also accept an array as shown in the

following example −

#include <stdio.h>

/* function declaration */

double getAverage(int *arr, int size);

int main () {

 /* an int array with 5 elements */

 int balance[5] = {1000, 2, 3, 17, 50};

 double avg;

 /* pass pointer to the array as an argument */

 avg = getAverage(balance, 5) ;

 /* output the returned value */

 printf("Average value is: %f\n", avg);

 return 0;

}

double getAverage(int *arr, int size) {

 int i, sum = 0;

 double avg;

 for (i = 0; i < size; ++i) {

 sum += arr[i];

 }

 avg = (double)sum / size;

 return avg;

}

When the above code is compiled together and executed, it produces the following

result −

Average value is: 214.40000

Return pointer from functions in C

We have seen in the last chapter how C programming allows to return an array from

a function. Similarly, C also allows to return a pointer from a function. To do so,

you would have to declare a function returning a pointer as in the following example

−

int * myFunction() {

 .

 .

 .

}

Second point to remember is that, it is not a good idea to return the address of a

local variable outside the function, so you would have to define the local variable

as static variable.

Now, consider the following function which will generate 10 random numbers and

return them using an array name which represents a pointer, i.e., address of first

array element.

#include <stdio.h>

#include <time.h>

/* function to generate and return random numbers. */

int * getRandom() {

 static int r[10];

 int i;

 /* set the seed */

 srand((unsigned)time(NULL));

 for (i = 0; i < 10; ++i) {

 r[i] = rand();

 printf("%d\n", r[i]);

 }

 return r;

}

/* main function to call above defined function */

int main () {

 /* a pointer to an int */

 int *p;

 int i;

 p = getRandom();

 for (i = 0; i < 10; i++) {

 printf("*(p + [%d]) : %d\n", i, *(p + i));

 }

 return 0;

}

When the above code is compiled together and executed, it produces the following

result −

1523198053

1187214107

1108300978

430494959

1421301276

930971084

123250484

106932140

1604461820

149169022

*(p + [0]) : 1523198053

*(p + [1]) : 1187214107

*(p + [2]) : 1108300978

*(p + [3]) : 430494959

*(p + [4]) : 1421301276

*(p + [5]) : 930971084

*(p + [6]) : 123250484

*(p + [7]) : 106932140

*(p + [8]) : 1604461820

*(p + [9]) : 149169022

File I/O

A file represents a sequence of bytes, regardless of it being a text file or a binary

file. C programming language provides access on high level functions as well as

low level (OS level) calls to handle file on your storage devices. This chapter will

take you through the important calls for file management.

Opening Files

You can use the fopen() function to create a new file or to open an existing file.

This call will initialize an object of the type FILE, which contains all the

information necessary to control the stream. The prototype of this function call is

as follows −

FILE *fopen(const char * filename, const char * mode);

Here, filename is a string literal, which you will use to name your file, and

access mode can have one of the following values −

Sr.No. Mode & Description

1 r

Opens an existing text file for reading purpose.

2
w

Opens a text file for writing. If it does not exist, then a new file is created. Here

your program will start writing content from the beginning of the file.

3
a

Opens a text file for writing in appending mode. If it does not exist, then a new file

is created. Here your program will start appending content in the existing file

content.

4
r+

Opens a text file for both reading and writing.

5
w+

Opens a text file for both reading and writing. It first truncates the file to zero

length if it exists, otherwise creates a file if it does not exist.

6
a+

Opens a text file for both reading and writing. It creates the file if it does not exist.

The reading will start from the beginning but writing can only be appended.

If you are going to handle binary files, then you will use following access modes

instead of the above mentioned ones −

"rb", "wb", "ab", "rb+", "r+b", "wb+", "w+b", "ab+", "a+b"

Closing a File

To close a file, use the fclose() function. The prototype of this function is −

int fclose(FILE *fp);

The fclose(-) function returns zero on success, or EOF if there is an error in closing

the file. This function actually flushes any data still pending in the buffer to the file,

closes the file, and releases any memory used for the file. The EOF is a constant

defined in the header file stdio.h.

There are various functions provided by C standard library to read and write a file,

character by character, or in the form of a fixed length string.

Writing a File

Following is the simplest function to write individual characters to a stream −

int fputc(int c, FILE *fp);

The function fputc() writes the character value of the argument c to the output

stream referenced by fp. It returns the written character written on success

otherwise EOF if there is an error. You can use the following functions to write a

null-terminated string to a stream −

int fputs(const char *s, FILE *fp);

The function fputs() writes the string s to the output stream referenced by fp. It

returns a non-negative value on success, otherwise EOF is returned in case of any

error. You can use int fprintf(FILE *fp,const char *format, ...) function as well

to write a string into a file. Try the following example.

Make sure you have /tmp directory available. If it is not, then before proceeding,

you must create this directory on your machine.

#include <stdio.h>

main() {

 FILE *fp;

 fp = fopen("/tmp/test.txt", "w+");

 fprintf(fp, "This is testing for fprintf...\n");

 fputs("This is testing for fputs...\n", fp);

 fclose(fp);

}

When the above code is compiled and executed, it creates a new file test.txt in /tmp

directory and writes two lines using two different functions. Let us read this file in

the next section.

Reading a File

Given below is the simplest function to read a single character from a file −

int fgetc(FILE * fp);

The fgetc() function reads a character from the input file referenced by fp. The

return value is the character read, or in case of any error, it returns EOF. The

following function allows to read a string from a stream −

char *fgets(char *buf, int n, FILE *fp);

The functions fgets() reads up to n-1 characters from the input stream referenced

by fp. It copies the read string into the buffer buf, appending a null character to

terminate the string.

If this function encounters a newline character '\n' or the end of the file EOF before

they have read the maximum number of characters, then it returns only the

characters read up to that point including the new line character. You can also

use int fscanf(FILE *fp, const char *format, ...) function to read strings from a

file, but it stops reading after encountering the first space character.

#include <stdio.h>

main() {

 FILE *fp;

 char buff[255];

 fp = fopen("/tmp/test.txt", "r");

 fscanf(fp, "%s", buff);

 printf("1 : %s\n", buff);

 fgets(buff, 255, (FILE*)fp);

 printf("2: %s\n", buff);

 fgets(buff, 255, (FILE*)fp);

 printf("3: %s\n", buff);

 fclose(fp);

}

When the above code is compiled and executed, it reads the file created in the

previous section and produces the following result −

1 : This

2: is testing for fprintf...

3: This is testing for fputs...

Let's see a little more in detail about what happened here. First, fscanf() read

just This because after that, it encountered a space, second call is for fgets() which

reads the remaining line till it encountered end of line. Finally, the last

call fgets() reads the second line completely.

Binary I/O Functions

There are two functions, that can be used for binary input and output −

size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE

*a_file);

size_t fwrite(const void *ptr, size_t size_of_elements, size_t number_of_elements,

FILE *a_file);

Both of these functions should be used to read or write blocks of memories - usually

arrays or structures.

Command Line Arguments

It is possible to pass some values from the command line to your C programs when

they are executed. These values are called command line arguments and many

times they are important for your program especially when you want to control your

program from outside instead of hard coding those values inside the code.

The command line arguments are handled using main() function arguments

where argc refers to the number of arguments passed, and argv[] is a pointer array

which points to each argument passed to the program. Following is a simple

example which checks if there is any argument supplied from the command line

and take action accordingly −

#include <stdio.h>

int main(int argc, char *argv[]) {

 if(argc == 2) {

 printf("The argument supplied is %s\n", argv[1]);

 }

 else if(argc > 2) {

 printf("Too many arguments supplied.\n");

 }

 else {

 printf("One argument expected.\n");

 }

}

When the above code is compiled and executed with single argument, it produces

the following result.

$./a.out testing

The argument supplied is testing

When the above code is compiled and executed with a two arguments, it produces

the following result.

$./a.out testing1 testing2

Too many arguments supplied.

When the above code is compiled and executed without passing any argument, it

produces the following result.

$./a.out

One argument expected

It should be noted that argv[0] holds the name of the program itself and argv[1] is

a pointer to the first command line argument supplied, and *argv[n] is the last

argument. If no arguments are supplied, argc will be one, and if you pass one

argument then argc is set at 2.

You pass all the command line arguments separated by a space, but if argument

itself has a space then you can pass such arguments by putting them inside double

quotes "" or single quotes ''. Let us re-write above example once again where we

will print program name and we also pass a command line argument by putting

inside double quotes −

#include <stdio.h>

int main(int argc, char *argv[]) {

 printf("Program name %s\n", argv[0]);

 if(argc == 2) {

 printf("The argument supplied is %s\n", argv[1]);

 }

 else if(argc > 2) {

 printf("Too many arguments supplied.\n");

 }

 else {

 printf("One argument expected.\n");

 }

}

When the above code is compiled and executed with a single argument separated

by space but inside double quotes, it produces the following result.

$./a.out "testing1 testing2"

Progranm name ./a.out

The argument supplied is testing1 testing2

