
Year Subject Title Sem Sub Code

2018 -19

Onwards
Core: COMPUTER FUNDAMENTALS

AND C PROGRAMMING

I 18BIT13C

UNIT IV: User-Defined Functions: Introduction – Need and Elements of User-

Defined Functions- Definition Return Values and their types - Function Calls –

Function Declaration– Category of Functions- Nesting of Functions - Recursion –

Passing Arrays and Strings to Functions - Structures and Unions.

TEXT BOOK

1. E Balagurusamy,” Computing Fundamentals & C Programming” -

TataMcGraw-Hill, Second Reprint 2008, ISBN 978-0-07-066909-3.

Prepared by P.Sundari.

C - Functions

A function is a group of statements that together perform a task. Every C program

has at least one function, which is main(), and all the most trivial programs can

define additional functions.

You can divide up your code into separate functions. How you divide up your code

among different functions is up to you, but logically the division is such that each

function performs a specific task.

A function declaration tells the compiler about a function's name, return type, and

parameters. A function definition provides the actual body of the function.

The C standard library provides numerous built-in functions that your program can

call. For example, strcat() to concatenate two strings, strcpy() to copy one memory

location to another location, and many more functions.

A function can also be referred as a method or a sub-routine or a procedure, etc.

Defining a Function

The general form of a function definition in C programming language is as follows

−

return_type function_name(parameter list) {

 body of the function

}

A function definition in C programming consists of a function header and a function

body. Here are all the parts of a function –

 Return Type − A function may return a value. The return_type is the data

type of the value the function returns. Some functions perform the desired

operations without returning a value. In this case, the return_type is the

keyword void.

 Function Name − This is the actual name of the function. The function name

and the parameter list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is invoked,

you pass a value to the parameter. This value is referred to as actual parameter

or argument. The parameter list refers to the type, order, and number of the

parameters of a function. Parameters are optional; that is, a function may

contain no parameters.

 Function Body − The function body contains a collection of statements that

define what the function does.

Example

Given below is the source code for a function called max(). This function takes two

parameters num1 and num2 and returns the maximum value between the two −

/* function returning the max between two numbers */

int max(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call

the function. The actual body of the function can be defined separately.

A function declaration has the following parts −

return_type function_name(parameter list);

For the above defined function max(), the function declaration is as follows −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is

required, so the following is also a valid declaration −

int max(int, int);

Function declaration is required when you define a function in one source file and

you call that function in another file. In such case, you should declare the function

at the top of the file calling the function.

Calling a Function

While creating a C function, you give a definition of what the function has to do.

To use a function, you will have to call that function to perform the defined task.

When a program calls a function, the program control is transferred to the called

function. A called function performs a defined task and when its return statement is

executed or when its function-ending closing brace is reached, it returns the

program control back to the main program.

To call a function, you simply need to pass the required parameters along with the

function name, and if the function returns a value, then you can store the returned

value. For example −

#include <stdio.h>

/* function declaration */

int max(int num1, int num2);

int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 int ret;

 /* calling a function to get max value */

 ret = max(a, b);

 printf("Max value is : %d\n", ret);

 return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

We have kept max() along with main() and compiled the source code. While

running the final executable, it would produce the following result −

Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of

the arguments. These variables are called the formal parameters of the function.

Formal parameters behave like other local variables inside the function and are

created upon entry into the function and destroyed upon exit.

While calling a function, there are two ways in which arguments can be passed to a

function −

Sr.No. Call Type & Description

1 Call by value

https://www.tutorialspoint.com/cprogramming/c_function_call_by_value.htm

This method copies the actual value of an argument into the formal parameter of

the function. In this case, changes made to the parameter inside the function have

no effect on the argument.

2 Call by reference

This method copies the address of an argument into the formal parameter. Inside

the function, the address is used to access the actual argument used in the call. This

means that changes made to the parameter affect the argument.

By default, C uses call by value to pass arguments. In general, it means the code

within a function cannot alter the arguments used to call the function.

Function call by Value in C

The call by value method of passing arguments to a function copies the actual value

of an argument into the formal parameter of the function. In this case, changes made

to the parameter inside the function have no effect on the argument.

By default, C programming uses call by value to pass arguments. In general, it

means the code within a function cannot alter the arguments used to call the

function. Consider the function swap() definition as follows.

/* function definition to swap the values */

void swap(int x, int y) {

 int temp;

 temp = x; /* save the value of x */

 x = y; /* put y into x */

 y = temp; /* put temp into y */

 return;

}

Now, let us call the function swap() by passing actual values as in the following

example −

#include <stdio.h>

/* function declaration */

void swap(int x, int y);

https://www.tutorialspoint.com/cprogramming/c_function_call_by_reference.htm

int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 printf("Before swap, value of a : %d\n", a);

 printf("Before swap, value of b : %d\n", b);

 /* calling a function to swap the values */

 swap(a, b);

 printf("After swap, value of a : %d\n", a);

 printf("After swap, value of b : %d\n", b);

 return 0;

}

Let us put the above code in a single C file, compile and execute it, it will produce

the following result −

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

It shows that there are no changes in the values, though they had been changed

inside the function.

Function call by reference in C

The call by reference method of passing arguments to a function copies the address

of an argument into the formal parameter. Inside the function, the address is used

to access the actual argument used in the call. It means the changes made to the

parameter affect the passed argument.

To pass a value by reference, argument pointers are passed to the functions just like

any other value. So accordingly you need to declare the function parameters as

pointer types as in the following function swap(), which exchanges the values of

the two integer variables pointed to, by their arguments.

/* function definition to swap the values */

void swap(int *x, int *y) {

 int temp;

 temp = *x; /* save the value at address x */

 *x = *y; /* put y into x */

 y = temp; / put temp into y */

 return;

}

Let us now call the function swap() by passing values by reference as in the

following example −

#include <stdio.h>

/* function declaration */

void swap(int *x, int *y);

int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 printf("Before swap, value of a : %d\n", a);

 printf("Before swap, value of b : %d\n", b);

 /* calling a function to swap the values.

 * &a indicates pointer to a ie. address of variable a and

 * &b indicates pointer to b ie. address of variable b.

 */

 swap(&a, &b);

 printf("After swap, value of a : %d\n", a);

 printf("After swap, value of b : %d\n", b);

 return 0;

}

Let us put the above code in a single C file, compile and execute it, to produce the

following result −

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

It shows that the change has reflected outside the function as well, unlike call by

value where the changes do not reflect outside the function.

Recursion

Recursion is the process of repeating items in a self-similar way. In programming

languages, if a program allows you to call a function inside the same function, then

it is called a recursive call of the function.

void recursion() {

 recursion(); /* function calls itself */

}

int main() {

 recursion();

}

The C programming language supports recursion, i.e., a function to call itself. But

while using recursion, programmers need to be careful to define an exit condition

from the function, otherwise it will go into an infinite loop.

Recursive functions are very useful to solve many mathematical problems, such as

calculating the factorial of a number, generating Fibonacci series, etc.

Number Factorial

The following example calculates the factorial of a given number using a recursive

function −

#include <stdio.h>

unsigned long long int factorial(unsigned int i) {

 if(i <= 1) {

 return 1;

 }

 return i * factorial(i - 1);

}

int main() {

 int i = 12;

 printf("Factorial of %d is %d\n", i, factorial(i));

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Factorial of 12 is 479001600

Fibonacci Series

The following example generates the Fibonacci series for a given number using a

recursive function −

#include <stdio.h>

int fibonacci(int i) {

 if(i == 0) {

 return 0;

 }

 if(i == 1) {

 return 1;

 }

 return fibonacci(i-1) + fibonacci(i-2);

}

int main() {

 int i;

 for (i = 0; i < 10; i++) {

 printf("%d\t\n", fibonacci(i));

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

0

1

1

2

3

5

8

13

21

34

Structures

Arrays allow to define type of variables that can hold several data items of the same

kind. Similarly structure is another user defined data type available in C that allows

to combine data items of different kinds.

Structures are used to represent a record. Suppose you want to keep track of your

books in a library. You might want to track the following attributes about each book

−

 Title

 Author

 Subject

 Book ID

Defining a Structure

To define a structure, you must use the struct statement. The struct statement

defines a new data type, with more than one member. The format of the struct

statement is as follows −

struct [structure tag] {

 member definition;

 member definition;

 ...

 member definition;

} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable

definition, such as int i; or float f; or any other valid variable definition. At the end

of the structure's definition, before the final semicolon, you can specify one or more

structure variables but it is optional. Here is the way you would declare the Book

structure −

struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

} book;

Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The

member access operator is coded as a period between the structure variable name

and the structure member that we wish to access. You would use the

keyword struct to define variables of structure type. The following example shows

how to use a structure in a program −

#include <stdio.h>

#include <string.h>

struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

};

int main() {

 struct Books Book1; /* Declare Book1 of type Book */

 struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 strcpy(Book1.title, "C Programming");

 strcpy(Book1.author, "Nuha Ali");

 strcpy(Book1.subject, "C Programming Tutorial");

 Book1.book_id = 6495407;

 /* book 2 specification */

 strcpy(Book2.title, "Telecom Billing");

 strcpy(Book2.author, "Zara Ali");

 strcpy(Book2.subject, "Telecom Billing Tutorial");

 Book2.book_id = 6495700;

 /* print Book1 info */

 printf("Book 1 title : %s\n", Book1.title);

 printf("Book 1 author : %s\n", Book1.author);

 printf("Book 1 subject : %s\n", Book1.subject);

 printf("Book 1 book_id : %d\n", Book1.book_id);

 /* print Book2 info */

 printf("Book 2 title : %s\n", Book2.title);

 printf("Book 2 author : %s\n", Book2.author);

 printf("Book 2 subject : %s\n", Book2.subject);

 printf("Book 2 book_id : %d\n", Book2.book_id);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

Structures as Function Arguments

You can pass a structure as a function argument in the same way as you pass any

other variable or pointer.

#include <stdio.h>

#include <string.h>

struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

};

/* function declaration */

void printBook(struct Books book);

int main() {

 struct Books Book1; /* Declare Book1 of type Book */

 struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 strcpy(Book1.title, "C Programming");

 strcpy(Book1.author, "Nuha Ali");

 strcpy(Book1.subject, "C Programming Tutorial");

 Book1.book_id = 6495407;

 /* book 2 specification */

 strcpy(Book2.title, "Telecom Billing");

 strcpy(Book2.author, "Zara Ali");

 strcpy(Book2.subject, "Telecom Billing Tutorial");

 Book2.book_id = 6495700;

 /* print Book1 info */

 printBook(Book1);

 /* Print Book2 info */

 printBook(Book2);

 return 0;

}

void printBook(struct Books book) {

 printf("Book title : %s\n", book.title);

 printf("Book author : %s\n", book.author);

 printf("Book subject : %s\n", book.subject);

 printf("Book book_id : %d\n", book.book_id);

}

When the above code is compiled and executed, it produces the following result −

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Pointers to Structures

You can define pointers to structures in the same way as you define pointer to any

other variable −

struct Books *struct_pointer;

Now, you can store the address of a structure variable in the above defined pointer

variable. To find the address of a structure variable, place the '&'; operator before

the structure's name as follows −

struct_pointer = &Book1;

To access the members of a structure using a pointer to that structure, you must use

the → operator as follows −

struct_pointer->title;

Let us re-write the above example using structure pointer.

#include <stdio.h>

#include <string.h>

struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

};

/* function declaration */

void printBook(struct Books *book);

int main() {

 struct Books Book1; /* Declare Book1 of type Book */

 struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 strcpy(Book1.title, "C Programming");

 strcpy(Book1.author, "Nuha Ali");

 strcpy(Book1.subject, "C Programming Tutorial");

 Book1.book_id = 6495407;

 /* book 2 specification */

 strcpy(Book2.title, "Telecom Billing");

 strcpy(Book2.author, "Zara Ali");

 strcpy(Book2.subject, "Telecom Billing Tutorial");

 Book2.book_id = 6495700;

 /* print Book1 info by passing address of Book1 */

 printBook(&Book1);

 /* print Book2 info by passing address of Book2 */

 printBook(&Book2);

 return 0;

}

void printBook(struct Books *book) {

 printf("Book title : %s\n", book->title);

 printf("Book author : %s\n", book->author);

 printf("Book subject : %s\n", book->subject);

 printf("Book book_id : %d\n", book->book_id);

}

When the above code is compiled and executed, it produces the following result −

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Bit Fields

Bit Fields allow the packing of data in a structure. This is especially useful when

memory or data storage is at a premium. Typical examples include −

 Packing several objects into a machine word. e.g. 1 bit flags can be

compacted.

 Reading external file formats -- non-standard file formats could be read in,

e.g., 9-bit integers.

C allows us to do this in a structure definition by putting :bit length after the

variable. For example −

struct packed_struct {

 unsigned int f1:1;

 unsigned int f2:1;

 unsigned int f3:1;

 unsigned int f4:1;

 unsigned int type:4;

 unsigned int my_int:9;

} pack;

Here, the packed_struct contains 6 members: Four 1 bit flags f1..f3, a 4-bit type and

a 9-bit my_int.

C automatically packs the above bit fields as compactly as possible, provided that

the maximum length of the field is less than or equal to the integer word length of

the computer. If this is not the case, then some compilers may allow memory

overlap for the fields while others would store the next field in the next word.

Unions

A union is a special data type available in C that allows to store different data types

in the same memory location. You can define a union with many members, but only

one member can contain a value at any given time. Unions provide an efficient way

of using the same memory location for multiple-purpose.

Defining a Union

To define a union, you must use the union statement in the same way as you did

while defining a structure. The union statement defines a new data type with more

than one member for your program. The format of the union statement is as follows

−

union [union tag] {

 member definition;

 member definition;

 ...

 member definition;

} [one or more union variables];

The union tag is optional and each member definition is a normal variable

definition, such as int i; or float f; or any other valid variable definition. At the end

of the union's definition, before the final semicolon, you can specify one or more

union variables but it is optional. Here is the way you would define a union type

named Data having three members i, f, and str −

union Data {

 int i;

 float f;

 char str[20];

} data;

Now, a variable of Data type can store an integer, a floating-point number, or a

string of characters. It means a single variable, i.e., same memory location, can be

used to store multiple types of data. You can use any built-in or user defined data

types inside a union based on your requirement.

The memory occupied by a union will be large enough to hold the largest member

of the union. For example, in the above example, Data type will occupy 20 bytes of

memory space because this is the maximum space which can be occupied by a

character string. The following example displays the total memory size occupied

by the above union −

#include <stdio.h>

#include <string.h>

union Data {

 int i;

 float f;

 char str[20];

};

int main() {

 union Data data;

 printf("Memory size occupied by data : %d\n", sizeof(data));

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Memory size occupied by data : 20

Accessing Union Members

To access any member of a union, we use the member access operator (.). The

member access operator is coded as a period between the union variable name and

the union member that we wish to access. You would use the keyword union to

define variables of union type. The following example shows how to use unions in

a program −

#include <stdio.h>

#include <string.h>

union Data {

 int i;

 float f;

 char str[20];

};

int main() {

 union Data data;

 data.i = 10;

 data.f = 220.5;

 strcpy(data.str, "C Programming");

 printf("data.i : %d\n", data.i);

 printf("data.f : %f\n", data.f);

 printf("data.str : %s\n", data.str);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

data.i : 1917853763

data.f : 4122360580327794860452759994368.000000

data.str : C Programming

Here, we can see that the values of i and f members of union got corrupted because

the final value assigned to the variable has occupied the memory location and this

is the reason that the value of str member is getting printed very well.

Now let's look into the same example once again where we will use one variable at

a time which is the main purpose of having unions −

#include <stdio.h>

#include <string.h>

union Data {

 int i;

 float f;

 char str[20];

};

int main() {

 union Data data;

 data.i = 10;

 printf("data.i : %d\n", data.i);

 data.f = 220.5;

 printf("data.f : %f\n", data.f);

 strcpy(data.str, "C Programming");

 printf("data.str : %s\n", data.str);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

data.i : 10

data.f : 220.500000

data.str : C Programming

Here, all the members are getting printed very well because one member is being

used at a time.

