
Year Subject Title Sem Sub Code

2018 -19

Onwards
Core: COMPUTER FUNDAMENTALS

AND C PROGRAMMING

I 18BIT13C

UNITIII: Decision Making and Branching: Introduction – If, If….Else, nesting of

If …Else statements- Else If ladder – The Switch statement, The?: Operator – The

Go to Statement. Decision Making and Looping: Introduction- the While statement-

the do statement – the for statement-jumps in loops. Arrays - Character Arrays and

Strings.

TEXT BOOK

E Balagurusamy,” Computing Fundamentals & C Programming” – Tata

McGraw-Hill, Second Reprint 2008, ISBN 978-0-07-066909-3.

Prepared by P.Sundari.

 Decision Making

Decision making structures require that the programmer specifies one or more

conditions to be evaluated or tested by the program, along with a statement or

statements to be executed if the condition is determined to be true, and optionally,

other statements to be executed if the condition is determined to be false.

Show below is the general form of a typical decision making structure found in

most of the programming languages −

C programming language assumes any non-zero and non-null values as true, and

if it is either zero or null, then it is assumed as false value.

C programming language provides the following types of decision making

statements.

Sr.No. Statement & Description

1 if statement

An if statement consists of a boolean expression followed by one or more

statements.

2 if...else statement

An if statement can be followed by an optional else statement, which executes

when the Boolean expression is false.

3 nested if statements

You can use one if or else if statement inside another if or else if statement(s).

4 switch statement

https://www.tutorialspoint.com/cprogramming/if_statement_in_c.htm
https://www.tutorialspoint.com/cprogramming/if_else_statement_in_c.htm
https://www.tutorialspoint.com/cprogramming/nested_if_statements_in_c.htm
https://www.tutorialspoint.com/cprogramming/switch_statement_in_c.htm

A switch statement allows a variable to be tested for equality against a list of

values.

5 nested switch statements

You can use one switch statement inside another switch statement(s).

if statement

An if statement consists of a Boolean expression followed by one or more

statements.

Syntax

The syntax of an 'if' statement in C programming language is −

 if(boolean_expression)

 {

 /* statement(s) will execute if the boolean expression is true */

 }

If the Boolean expression evaluates to true, then the block of code inside the 'if'

statement will be executed. If the Boolean expression evaluates to false, then the

first set of code after the end of the 'if' statement (after the closing curly brace) will

be executed.

C programming language assumes any non-zero and non-null values as true and

if it is either zero or null, then it is assumed as false value.

https://www.tutorialspoint.com/cprogramming/nested_switch_statements_in_c.htm

Flow Diagram

Example

#include <stdio.h>

int main ()

{

 /* local variable definition */

 int a = 10;

 /* check the boolean condition using if statement */

 if(a < 20)

 {

 /* if condition is true then print the following */

 printf("a is less than 20\n");

 }

 printf("value of a is : %d\n", a);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

a is less than 20;

value of a is : 10

if...else statement

An if statement can be followed by an optional else statement, which executes

when the Boolean expression is false.

Syntax

The syntax of an if...else statement in C programming language is −

if(boolean_expression)

 {

 /* statement(s) will execute if the boolean expression is true */

 }

else

 {

 /* statement(s) will execute if the boolean expression is false */

 }

If the Boolean expression evaluates to true, then the if block will be executed,

otherwise, the else block will be executed.

C programming language assumes any non-zero and non-null values as true, and

if it is either zero or null, then it is assumed as false value.

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 100;

 /* check the boolean condition */

 if(a < 20) {

 /* if condition is true then print the following */

 printf("a is less than 20\n");

 } else {

 /* if condition is false then print the following */

 printf("a is not less than 20\n");

 }

 printf("value of a is : %d\n", a);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

 a is not less than 20;

 value of a is : 100

If...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very

useful to test various conditions using single if...else if statement.

When using if...else if..else statements, there are few points to keep in mind −

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax

The syntax of an if...else if...else statement in C programming language is −

 if(boolean_expression 1)

 {

 /* Executes when the boolean expression 1 is true */

 }

 else if(boolean_expression 2)

 {

 /* Executes when the boolean expression 2 is true */

 }

 else if(boolean_expression 3)

 {

 /* Executes when the boolean expression 3 is true */

 }

 else

 {

 /* executes when the none of the above condition is true */

 }

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 100;

 /* check the boolean condition */

 if(a == 10) {

 /* if condition is true then print the following */

 printf("Value of a is 10\n");

 } else if(a == 20) {

 /* if else if condition is true */

 printf("Value of a is 20\n");

 } else if(a == 30) {

 /* if else if condition is true */

 printf("Value of a is 30\n");

 } else {

 /* if none of the conditions is true */

 printf("None of the values is matching\n");

 }

 printf("Exact value of a is: %d\n", a);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

None of the values is matching

Exact value of a is: 100

Nested if statements

It is always legal in C programming to nest if-else statements, which means you

can use one if or else if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows −

if(boolean_expression 1) {

 /* Executes when the boolean expression 1 is true */

 if(boolean_expression 2) {

 /* Executes when the boolean expression 2 is true */

 }

}

You can nest else if...else in the similar way as you have nested if statements.

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 /* check the boolean condition */

 if(a == 100) {

 /* if condition is true then check the following */

 if(b == 200) {

 /* if condition is true then print the following */

 printf("Value of a is 100 and b is 200\n");

 }

 }

 printf("Exact value of a is : %d\n", a);

 printf("Exact value of b is : %d\n", b);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

switch statement

A switch statement allows a variable to be tested for equality against a list of values.

Each value is called a case, and the variable being switched on is checked for

each switch case.

Syntax

The syntax for a switch statement in C programming language is as follows −

switch(expression) {

 case constant-expression :

 statement(s);

 break; /* optional */

 case constant-expression :

 statement(s);

 break; /* optional */

 /* you can have any number of case statements */

 default : /* Optional */

 statement(s);

}

The following rules apply to a switch statement −

 The expression used in a switch statement must have an integral or

enumerated type, or be of a class type in which the class has a single

conversion function to an integral or enumerated type.

 You can have any number of case statements within a switch. Each case is

followed by the value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable

in the switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements

following that case will execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of

control jumps to the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of

control will fall through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at

the end of the switch. The default case can be used for performing a task

when none of the cases is true. No break is needed in the default case.

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 char grade = 'B';

 switch(grade) {

 case 'A' :

 printf("Excellent!\n");

 break;

 case 'B' :

 case 'C' :

 printf("Well done\n");

 break;

 case 'D' :

 printf("You passed\n");

 break;

 case 'F' :

 printf("Better try again\n");

 break;

 default :

 printf("Invalid grade\n");

 }

 printf("Your grade is %c\n", grade);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Well done

Your grade is B

The ? : Operator

We have covered conditional operator ? : in the previous chapter which can be

used to replace if...else statements. It has the following general form −

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the

colon.

The value of a ? expression is determined like this −

 Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the value

of the entire ? expression.

 If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the

expression.

Go to statement

A goto statement in C programming provides an unconditional jump from the 'goto'

to a labeled statement in the same function.

NOTE − Use of goto statement is highly discouraged in any programming language

because it makes difficult to trace the control flow of a program, making the

program hard to understand and hard to modify. Any program that uses a goto can

be rewritten to avoid them.

Syntax

The syntax for a goto statement in C is as follows −

goto label;

..

.

label: statement;

Here label can be any plain text except C keyword and it can be set anywhere in

the C program above or below to goto statement.

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 LOOP:do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

 goto LOOP;

 }

 printf("value of a: %d\n", a);

 a++;

 }while(a < 20);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Loops

You may encounter situations, when a block of code needs to be executed several

number of times. In general, statements are executed sequentially: The first

statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple

times. Given below is the general form of a loop statement in most of the

programming languages −

C programming language provides the following types of loops to handle looping

requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is true. It tests

the condition before executing the loop body.

2 for loop

https://www.tutorialspoint.com/cprogramming/c_while_loop.htm
https://www.tutorialspoint.com/cprogramming/c_for_loop.htm

Executes a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

3 do...while loop

It is more like a while statement, except that it tests the condition at the end of the

loop body.

4 nested loops

You can use one or more loops inside any other while, for, or do..while loop.

while loop

A while loop in C programming repeatedly executes a target statement as long as a

given condition is true.

Syntax

The syntax of a while loop in C programming language is −

while(condition) {

 statement(s);

}

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any nonzero value. The loop

iterates while the condition is true.

When the condition becomes false, the program control passes to the line

immediately following the loop.

https://www.tutorialspoint.com/cprogramming/c_do_while_loop.htm
https://www.tutorialspoint.com/cprogramming/c_nested_loops.htm

Flow Diagram

Here, the key point to note is that a while loop might not execute at all. When the

condition is tested and the result is false, the loop body will be skipped and the first

statement after the while loop will be executed.

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* while loop execution */

 while(a < 20) {

 printf("value of a: %d\n", a);

 a++;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

for loop in C

A for loop is a repetition control structure that allows you to efficiently write a loop

that needs to execute a specific number of times.

Syntax

The syntax of a for loop in C programming language is −

for (init; condition; increment) {

 statement(s);

}

Here is the flow of control in a 'for' loop −

 The init step is executed first, and only once. This step allows you to declare

and initialize any loop control variables. You are not required to put a

statement here, as long as a semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed.

If it is false, the body of the loop does not execute and the flow of control

jumps to the next statement just after the 'for' loop.

 After the body of the 'for' loop executes, the flow of control jumps back up to

the increment statement. This statement allows you to update any loop

control variables. This statement can be left blank, as long as a semicolon

appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and the

process repeats itself (body of loop, then increment step, and then again

condition). After the condition becomes false, the 'for' loop terminates.

Flow Diagram

Example

#include <stdio.h>

int main () {

 int a;

 /* for loop execution */

 for(a = 10; a < 20; a = a + 1){

 printf("value of a: %d\n", a);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

do...while loop in C

Unlike for and while loops, which test the loop condition at the top of the loop,

the do...while loop in C programming checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except the fact that it is guaranteed to

execute at least one time.

Syntax

The syntax of a do...while loop in C programming language is −

do {

 statement(s);

} while(condition);

Notice that the conditional expression appears at the end of the loop, so the

statement(s) in the loop executes once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s)

in the loop executes again. This process repeats until the given condition becomes

false.

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do {

 printf("value of a: %d\n", a);

 a = a + 1;

 }while(a < 20);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

nested loops in C

C programming allows to use one loop inside another loop. The following section

shows a few examples to illustrate the concept.

Syntax

The syntax for a nested for loop statement in C is as follows −

for (init; condition; increment) {

 for (init; condition; increment) {

 statement(s);

 }

 statement(s);

}

The syntax for a nested while loop statement in C programming language is as

follows −

while(condition) {

 while(condition) {

 statement(s);

 }

 statement(s);

}

The syntax for a nested do...while loop statement in C programming language is

as follows −

do {

 statement(s);

 do {

 statement(s);

 }while(condition);

}while(condition);

A final note on loop nesting is that you can put any type of loop inside any other

type of loop. For example, a 'for' loop can be inside a 'while' loop or vice versa.

Example

The following program uses a nested for loop to find the prime numbers from 2 to

100 −

#include <stdio.h>

int main () {

 /* local variable definition */

 int i, j;

 for(i = 2; i<100; i++) {

 for(j = 2; j <= (i/j); j++)

 if(!(i%j)) break; // if factor found, not prime

 if(j > (i/j)) printf("%d is prime\n", i);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Loop Control Statements

Loop control statements change execution from its normal sequence. When

execution leaves a scope, all automatic objects that were created in that scope are

destroyed.

C supports the following control statements.

Sr.No. Control Statement & Description

1 break statement

Terminates the loop or switch statement and transfers execution to the statement

immediately following the loop or switch.

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest its

condition prior to reiterating.

3 goto statement

Transfers control to the labeled statement.

https://www.tutorialspoint.com/cprogramming/c_break_statement.htm
https://www.tutorialspoint.com/cprogramming/c_continue_statement.htm
https://www.tutorialspoint.com/cprogramming/c_goto_statement.htm

break statement in C

The break statement in C programming has the following two usages −

 When a break statement is encountered inside a loop, the loop is immediately

terminated and the program control resumes at the next statement following

the loop.

 It can be used to terminate a case in the switch statement (covered in the next

chapter).

If you are using nested loops, the break statement will stop the execution of the

innermost loop and start executing the next line of code after the block.

Syntax

The syntax for a break statement in C is as follows −

break;

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* while loop execution */

 while(a < 20) {

 printf("value of a: %d\n", a);

 a++;

 if(a > 15) {

 /* terminate the loop using break statement */

 break;

 }

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

continue statement in C

The continue statement in C programming works somewhat like

the break statement. Instead of forcing termination, it forces the next iteration of

the loop to take place, skipping any code in between.

For the for loop, continue statement causes the conditional test and increment

portions of the loop to execute. For

the while and do...while loops, continue statement causes the program control to

pass to the conditional tests.

Syntax

The syntax for a continue statement in C is as follows −

continue;

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

 continue;

 }

 printf("value of a: %d\n", a);

 a++;

 } while(a < 20);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

goto statement in C

A goto statement in C programming provides an unconditional jump from the 'goto'

to a labeled statement in the same function.

NOTE − Use of goto statement is highly discouraged in any programming language

because it makes difficult to trace the control flow of a program, making the

program hard to understand and hard to modify. Any program that uses a goto can

be rewritten to avoid them.

Syntax

The syntax for a goto statement in C is as follows −

goto label;

..

.

label: statement;

Here label can be any plain text except C keyword and it can be set anywhere in

the C program above or below to goto statement.

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 LOOP:do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

 goto LOOP;

 }

 printf("value of a: %d\n", a);

 a++;

 }while(a < 20);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

The Infinite Loop

A loop becomes an infinite loop if a condition never becomes false. The for loop is

traditionally used for this purpose. Since none of the three expressions that form the

'for' loop are required, you can make an endless loop by leaving the conditional

expression empty.

#include <stdio.h>

int main () {

 for(; ;) {

 printf("This loop will run forever.\n");

 }

 return 0;

}

When the conditional expression is absent, it is assumed to be true. You may have

an initialization and increment expression, but C programmers more commonly use

the for(;;) construct to signify an infinite loop.

NOTE − You can terminate an infinite loop by pressing Ctrl + C keys.

 Arrays

Arrays a kind of data structure that can store a fixed-size sequential collection of

elements of the same type. An array is used to store a collection of data, but it is

often more useful to think of an array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and

number99, you declare one array variable such as numbers and use numbers[0],

numbers[1], and ..., numbers[99] to represent individual variables. A specific

element in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds

to the first element and the highest address to the last element.

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the

number of elements required by an array as follows −

type arrayName [arraySize];

This is called a single-dimensional array. The arraySize must be an integer constant

greater than zero and type can be any valid C data type. For example, to declare a

10-element array called balance of type double, use this statement −

double balance[10];

Here balance is a variable array which is sufficient to hold up to 10 double numbers.

Initializing Arrays

You can initialize an array in C either one by one or using a single statement as

follows −

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } cannot be larger than the number of

elements that we declare for the array between square brackets [].

If you omit the size of the array, an array just big enough to hold the initialization

is created. Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

You will create exactly the same array as you did in the previous example.

Following is an example to assign a single element of the array −

balance[4] = 50.0;

The above statement assigns the 5th element in the array with a value of 50.0. All

arrays have 0 as the index of their first element which is also called the base index

and the last index of an array will be total size of the array minus 1. Shown below

is the pictorial representation of the array we discussed above −

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the

index of the element within square brackets after the name of the array. For example

−

double salary = balance[9];

The above statement will take the 10th element from the array and assign the value

to salary variable. The following example Shows how to use all the three above

mentioned concepts viz. declaration, assignment, and accessing arrays −

#include <stdio.h>

int main () {

 int n[10]; /* n is an array of 10 integers */

 int i,j;

 /* initialize elements of array n to 0 */

 for (i = 0; i < 10; i++) {

 n[i] = i + 100; /* set element at location i to i + 100 */

 }

 /* output each array element's value */

 for (j = 0; j < 10; j++) {

 printf("Element[%d] = %d\n", j, n[j]);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

Arrays in Detail

Arrays are important to C and should need a lot more attention. The following

important concepts related to array should be clear to a C programmer −

Sr.No. Concept & Description

1 Multi-dimensional arrays

C supports multidimensional arrays. The simplest form of the multidimensional

array is the two-dimensional array.

2 Passing arrays to functions

You can pass to the function a pointer to an array by specifying the array's name

without an index.

3 Return array from a function

C allows a function to return an array.

4 Pointer to an array

You can generate a pointer to the first element of an array by simply specifying the

array name, without any index.

https://www.tutorialspoint.com/cprogramming/c_multi_dimensional_arrays.htm
https://www.tutorialspoint.com/cprogramming/c_passing_arrays_to_functions.htm
https://www.tutorialspoint.com/cprogramming/c_return_arrays_from_function.htm
https://www.tutorialspoint.com/cprogramming/c_pointer_to_an_array.htm

Multi-dimensional Arrays in C

C programming language allows multidimensional arrays. Here is the general form

of a multidimensional array declaration −

type name[size1][size2]...[sizeN];

For example, the following declaration creates a three dimensional integer array −

int three dim[5][10][4];

Two-dimensional Arrays

The simplest form of multidimensional array is the two-dimensional array. A two-

dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-

dimensional integer array of size [x][y], you would write something as follows −

type arrayName [x][y];

Where type can be any valid C data type and arrayName will be a valid C

identifier. A two-dimensional array can be considered as a table which will have x

number of rows and y number of columns. A two-dimensional array a, which

contains three rows and four columns can be shown as follows −

Thus, every element in the array a is identified by an element name of the form a[

i][j], where 'a' is the name of the array, and 'i' and 'j' are the subscripts that uniquely

identify each element in 'a'.

Initializing Two-Dimensional Arrays

Multidimensional arrays may be initialized by specifying bracketed values for each

row. Following is an array with 3 rows and each row has 4 columns.

int a[3][4] = {

 {0, 1, 2, 3} , /* initializers for row indexed by 0 */

 {4, 5, 6, 7} , /* initializers for row indexed by 1 */

 {8, 9, 10, 11} /* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The following

initialization is equivalent to the previous example −

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements

An element in a two-dimensional array is accessed by using the subscripts, i.e., row

index and column index of the array. For example −

int val = a[2][3];

The above statement will take the 4th element from the 3rd row of the array. You

can verify it in the above figure. Let us check the following program where we have

used a nested loop to handle a two-dimensional array −

#include <stdio.h>

int main () {

 /* an array with 5 rows and 2 columns*/

 int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

 int i, j;

 /* output each array element's value */

 for (i = 0; i < 5; i++) {

 for (j = 0; j < 2; j++) {

 printf("a[%d][%d] = %d\n", i,j, a[i][j]);

 }

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

As explained above, you can have arrays with any number of dimensions, although

it is likely that most of the arrays you create will be of one or two dimensions.

Passing Arrays as Function Arguments in C

If you want to pass a single-dimension array as an argument in a function, you

would have to declare a formal parameter in one of following three ways and all

three declaration methods produce similar results because each tells the compiler

that an integer pointer is going to be received. Similarly, you can pass multi-

dimensional arrays as formal parameters.

Way-1

Formal parameters as a pointer −

void myFunction(int *param) {

 .

 .

 .

}

Way-2

Formal parameters as a sized array −

void myFunction(int param[10]) {

 .

 .

 .

}

Way-3

Formal parameters as an unsized array −

void myFunction(int param[]) {

 .

 .

 .

}

Example

Now, consider the following function, which takes an array as an argument along

with another argument and based on the passed arguments, it returns the average of

the numbers passed through the array as follows −

double getAverage(int arr[], int size) {

 int i;

 double avg;

 double sum = 0;

 for (i = 0; i < size; ++i) {

 sum += arr[i];

 }

 avg = sum / size;

 return avg;

}

Now, let us call the above function as follows −

#include <stdio.h>

/* function declaration */

double getAverage(int arr[], int size);

int main () {

 /* an int array with 5 elements */

 int balance[5] = {1000, 2, 3, 17, 50};

 double avg;

 /* pass pointer to the array as an argument */

 avg = getAverage(balance, 5) ;

 /* output the returned value */

 printf("Average value is: %f ", avg);

 return 0;

}

When the above code is compiled together and executed, it produces the following

result −

Average value is: 214.400000

As you can see, the length of the array doesn't matter as far as the function is

concerned because C performs no bounds checking for formal parameters.

Return array from function in C

C programming does not allow to return an entire array as an argument to a function.

However, you can return a pointer to an array by specifying the array's name

without an index.

If you want to return a single-dimension array from a function, you would have to

declare a function returning a pointer as in the following example −

int * myFunction() {

 .

 .

 .

}

Second point to remember is that C does not advocate to return the address of a

local variable to outside of the function, so you would have to define the local

variable as static variable.

Now, consider the following function which will generate 10 random numbers and

return them using an array and call this function as follows −

#include <stdio.h>

/* function to generate and return random numbers */

int * getRandom() {

 static int r[10];

 int i;

 /* set the seed */

 srand((unsigned)time(NULL));

 for (i = 0; i < 10; ++i) {

 r[i] = rand();

 printf("r[%d] = %d\n", i, r[i]);

 }

 return r;

}

/* main function to call above defined function */

int main () {

 /* a pointer to an int */

 int *p;

 int i;

 p = getRandom();

 for (i = 0; i < 10; i++) {

 printf("*(p + %d) : %d\n", i, *(p + i));

 }

 return 0;

}

When the above code is compiled together and executed, it produces the following

result −

r[0] = 313959809

r[1] = 1759055877

r[2] = 1113101911

r[3] = 2133832223

r[4] = 2073354073

r[5] = 167288147

r[6] = 1827471542

r[7] = 834791014

r[8] = 1901409888

r[9] = 1990469526

*(p + 0) : 313959809

*(p + 1) : 1759055877

*(p + 2) : 1113101911

*(p + 3) : 2133832223

*(p + 4) : 2073354073

*(p + 5) : 167288147

*(p + 6) : 1827471542

*(p + 7) : 834791014

*(p + 8) : 1901409888

*(p + 9) : 1990469526

 Strings

Strings are actually one-dimensional array of characters terminated by

a null character '\0'. Thus a null-terminated string contains the characters that

comprise the string followed by a null.

The following declaration and initialization create a string consisting of the word

"Hello". To hold the null character at the end of the array, the size of the character

array containing the string is one more than the number of characters in the word

"Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization then you can write the above statement

as follows −

char greeting[] = "Hello";

Following is the memory presentation of the above defined string in C/C++ −

Actually, you do not place the null character at the end of a string constant. The C

compiler automatically places the '\0' at the end of the string when it initializes the

array. Let us try to print the above mentioned string −

#include <stdio.h>

int main () {

 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 printf("Greeting message: %s\n", greeting);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Greeting message: Hello

C supports a wide range of functions that manipulate null-terminated strings −

Sr.No. Function & Purpose

1 strcpy(s1, s2);

Copies string s2 into string s1.

2 strcat(s1, s2);

Concatenates string s2 onto the end of string s1.

3 strlen(s1);

Returns the length of string s1.

4 strcmp(s1, s2);

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5 strchr(s1, ch);

Returns a pointer to the first occurrence of character ch in string s1.

6 strstr(s1, s2);

Returns a pointer to the first occurrence of string s2 in string s1.

The following example uses some of the above-mentioned functions −

#include <stdio.h>

#include <string.h>

int main () {

 char str1[12] = "Hello";

 char str2[12] = "World";

 char str3[12];

 int len ;

 /* copy str1 into str3 */

 strcpy(str3, str1);

 printf("strcpy(str3, str1) : %s\n", str3);

 /* concatenates str1 and str2 */

 strcat(str1, str2);

 printf("strcat(str1, str2): %s\n", str1);

 /* total lenghth of str1 after concatenation */

 len = strlen(str1);

 printf("strlen(str1) : %d\n", len);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

strcpy(str3, str1) : Hello

strcat(str1, str2): HelloWorld

strlen(str1) : 10

