
Year Subject Title Sem Sub Code

2018 -19

Onwards
Core: COMPUTER FUNDAMENTALS

AND C PROGRAMMING

I 18BIT13C

UNIT II: Overview of C: Introduction - Character set - C tokens - keyword &

Identifiers -Constants - Variables - Data types - Declaration of variables - Assigning

values to variables -Defining Symbolic Constants - Reading & Writing a character -

Formatted input and output - Arithmetic, Relational, Logical, Assignment,

Increment and Decrement operators, Conditional, Bitwise, Special Operators -

Arithmetic Expressions - Evaluation of expressions -precedence of arithmetic

operators - Type conversion in expressions – operator precedence &associatively -

Mathematical functions.

TEXT BOOK

E. Balagurusamy,” Computing Fundamentals & C Programming” – Tata

McGraw-Hill, Second Reprint 2008, ISBN 978-0-07-066909-3.

Prepared by P.Sundari.

C - CHARACTER SET

As every language contains a set of characters used to construct words, statements,

etc., C language also has a set of characters which include alphabets, digits,

and special symbols. C language supports a total of 256 characters.

Every C program contains statements. These statements are constructed using words

and these words are constructed using characters from C character set. C language

character set contains the following set of characters...

1. Alphabets

2. Digits

3. Special Symbols

Alphabets

C language supports all the alphabets from the English language. Lower and upper

case letters together support 52 alphabets.

lower case letters - a to z

UPPER CASE LETTERS - A to Z

Digits

C language supports 10 digits which are used to construct numerical values in C

language.

Digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols

C language supports a rich set of special symbols that include symbols to perform

mathematical operations, to check conditions, white spaces, backspaces, and other

special symbols.

Special Symbols - ~ @ # $ % ^ & * () _ - + = { } [] ; : ' " / ? . > , < \ | tab newline

space NULL bell backspace vertical tab etc.,

Tokens in C

Tokens are the smallest elements of a program, which are meaningful to the

compiler.

The following are the types of tokens: Keywords, Identifiers, Constant, Strings,

Operators, etc.

Let us begin with Keywords.

Keywords

Keywords are predefined, reserved words in C and each of which is associated with

specific features. These words help us to use the functionality of C language. They

have special meaning to the compilers.

There are total 32 keywords in C.

Auto double int struct

Break else long switch

Case enum register typedef

Char extern return union

Continue for signed void

Do if static while

Default goto sizeof volatile

Const float short unsigned

Identifiers

Each program element in C programming is known as an identifier. They are used

for naming of variables, functions, array etc. These are user-defined names which

consist of alphabets, number, underscore ‘_’. Identifier’s name should not be same

or same as keywords. Keywords are not used as identifiers.

Rules for naming C identifiers −

 It must begin with alphabets or underscore.

 Only alphabets, numbers, underscore can be used, no other special characters,

punctuations are allowed.

 It must not contain white-space.

 It should not be a keyword.

 It should be up to 31 characters long.

Strings

A string is an array of characters ended with a null character(\0). This null character

indicates that string has ended. Strings are always enclosed with double quotes(“ “).

Let us see how to declare String in C language −

 char string[20] = {‘s’,’t’,’u’,’d’,’y’, ‘\0’};

 char string[20] = “demo”;

 char string [] = “demo”;

C - Constants and Literals

Constants refer to fixed values that the program may not alter during its execution.

These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating

constant, a character constant, or a string literal. There are enumeration constants

as well.

Constants are treated just like regular variables except that their values cannot be

modified after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix

specifies the base or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for

decimal.

An integer literal can also have a suffix that is a combination of U and L, for

unsigned and long, respectively. The suffix can be uppercase or lowercase and can

be in any order.

Here are some examples of integer literals −

212 /* Legal */

215u /* Legal */

0xFeeL /* Legal */

078 /* Illegal: 8 is not an octal digit */

032UU /* Illegal: cannot repeat a suffix */

Following are other examples of various types of integer literals −

85 /* decimal */

0213 /* octal */

0x4b /* hexadecimal */

30 /* int */

30u /* unsigned int */

30l /* long */

30ul /* unsigned long */

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an

exponent part. You can represent floating point literals either in decimal form or

exponential form.

While representing decimal form, you must include the decimal point, the exponent,

or both; and while representing exponential form, you must include the integer part,

the fractional part, or both. The signed exponent is introduced by e or E.

Here are some examples of floating-point literals −

3.14159 /* Legal */

314159E-5L /* Legal */

510E /* Illegal: incomplete exponent */

210f /* Illegal: no decimal or exponent */

.e55 /* Illegal: missing integer or fraction */

Character Constants

Character literals are enclosed in single quotes, e.g., 'x' can be stored in a simple

variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'),

or a universal character (e.g., '\u02C0').

There are certain characters in C that represent special meaning when preceded by

a backslash for example, newline (\n) or tab (\t).

String Literals

String literals or constants are enclosed in double quotes "". A string contains

characters that are similar to character literals: plain characters, escape sequences,

and universal characters.

You can break a long line into multiple lines using string literals and separating

them using white spaces.

C - Variables

A variable is nothing but a name given to a storage area that our programs can

manipulate. Each variable in C has a specific type, which determines the size and

layout of the variable's memory; the range of values that can be stored within that

memory; and the set of operations that can be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore

character. It must begin with either a letter or an underscore. Upper and lowercase

letters are distinct because C is case-sensitive. Based on the basic types explained

in the previous chapter, there will be the following basic variable types –

C programming language also allows to define various other types of variables,

which we will cover in subsequent chapters like Enumeration, Pointer, Array,

Structure, Union, etc. For this chapter, let us study only basic variable types.

Variable Definition in C

A variable definition tells the compiler where and how much storage to create for

the variable. A variable definition specifies a data type and contains a list of one or

more variables of that type as follows −

type variable_list;

Sr.No.

Type & Description

1 char

Typically a single octet(one byte). It is an integer type.

2
int

The most natural size of integer for the machine.

3
float

A single-precision floating point value.

4
double

A double-precision floating point value.

5
void

Represents the absence of type.

Here, type must be a valid C data type including char, w_char, int, float, double,

bool, or any user-defined object; and variable_list may consist of one or more

identifier names separated by commas. Some valid declarations are shown here −

int i, j, k;

char c, ch;

float f, salary;

double d;

The line int i, j, k; declares and defines the variables i, j, and k; which instruct the

compiler to create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The

initializer consists of an equal sign followed by a constant expression as follows −

type variable_name = value;

Some examples are −

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

For definition without an initializer: variables with static storage duration are

implicitly initialized with NULL (all bytes have the value 0); the initial value of all

other variables are undefined.

Variable Declaration in C

A variable declaration provides assurance to the compiler that there exists a variable

with the given type and name so that the compiler can proceed for further

compilation without requiring the complete detail about the variable. A variable

definition has its meaning at the time of compilation only, the compiler needs actual

variable definition at the time of linking the program.

A variable declaration is useful when you are using multiple files and you define

your variable in one of the files which will be available at the time of linking of the

program. You will use the keyword extern to declare a variable at any place.

Though you can declare a variable multiple times in your C program, it can be

defined only once in a file, a function, or a block of code.

C - Data Types

Data types in C refer to an extensive system used for declaring variables or

functions of different types. The type of a variable determines how much space it

occupies in storage and how the bit pattern stored is interpreted.

The types in C can be classified as follows −

Sr.No. Types & Description

1 Basic Types

They are arithmetic types and are further classified into: (a) integer types and (b)

floating-point types.

2
Enumerated types

They are again arithmetic types and they are used to define variables that can only

assign certain discrete integer values throughout the program.

3
The type void

The type specifier void indicates that no value is available.

4
Derived types

They include (a) Pointer types, (b) Array types, (c) Structure types, (d) Union types

and (e) Function types.

The array types and structure types are referred collectively as the aggregate types.

The type of a function specifies the type of the function's return value. We will see

the basic types in the following section, where as other types will be covered in the

upcoming chapters.

Integer Types

The following table provides the details of standard integer types with their storage

sizes and value ranges −

Type Storage size Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes
-32,768 to 32,767 or -2,147,483,648 to

2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 8 bytes or (4bytes

for 32 bit OS)

-9223372036854775808 to

9223372036854775807

unsigned long 8 bytes 0 to 18446744073709551615

To get the exact size of a type or a variable on a particular platform, you can use

the sizeof operator. The expressions sizeof(type) yields the storage size of the object

or type in bytes.

Floating-Point Types

The following table provide the details of standard floating-point types with storage

sizes and value ranges and their precision −

Type Storage

size

Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

double 8 byte 2.3E-308 to 1.7E+308 15 decimal places

long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

The header file float.h defines macros that allow you to use these values and other

details about the binary representation of real numbers in your programs.

Assigning values to variables

There are two kinds of expressions in C −

 lvalue − Expressions that refer to a memory location are called "lvalue"

expressions. An lvalue may appear as either the left-hand or right-hand side

of an assignment.

 rvalue − The term rvalue refers to a data value that is stored at some address

in memory. An rvalue is an expression that cannot have a value assigned to

it which means an rvalue may appear on the right-hand side but not on the

left-hand side of an assignment.

Variables are lvalues and so they may appear on the left-hand side of an assignment.

Numeric literals are rvalues and so they may not be assigned and cannot appear on

the left-hand side. Take a look at the following valid and invalid statements −

int g = 20; // valid statement

10 = 20; // invalid statement; would generate compile-time error

Symbolic Constant

Symbolic constant is name that substitute for a sequence of character that cannot be

changed. The character may represent a numeric constant, a character constant, or a

string. When the program is compiled, each occurrence of a symbolic constant is

replaced by its corresponding character sequence. They are usually defined at the

beginning of the program. The symbolic constants may then appear later in the

program in place of the numeric constants, character constants, etc., that the

symbolic constants represent.

For example

A C program consists of the following symbolic constant definitions.

#define PI 3.141593

#define TRUE 1

#define FALSE 0

#define PI 3.141593 defines a symbolic constant PI whose value is 3.141593. When

the program is preprocessed, all occurrences of the symbolic constant PI are replaced

with the replacement text 3.141593.

C - Operators

An operator is a symbol that tells the compiler to perform specific mathematical or

logical functions. C language is rich in built-in operators and provides the following

types of operators −

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

We will, in this chapter, look into the way each operator works.

Arithmetic Operators

The following table shows all the arithmetic operators supported by the C language.

Assume variable A holds 10 and variable B holds 20 then −

Operator Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

% Modulus Operator and remainder of after an integer

division.

B % A = 0

++ Increment operator increases the integer value by

one.

A++ = 11

-- Decrement operator decreases the integer value by

one.

A-- = 9

Relational Operators

The following table shows all the relational operators supported by C. Assume

variable A holds 10 and variable B holds 20 then −

Operator Description Example

== Checks if the values of two operands are equal or not. If yes,

then the condition becomes true.

(A == B) is not

true.

!= Checks if the values of two operands are equal or not. If the

values are not equal, then the condition becomes true.

(A != B) is true.

> Checks if the value of left operand is greater than the value of

right operand. If yes, then the condition becomes true.

(A > B) is not

true.

< Checks if the value of left operand is less than the value of

right operand. If yes, then the condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than or equal to

the value of right operand. If yes, then the condition becomes

true.

(A >= B) is not

true.

<= Checks if the value of left operand is less than or equal to the

value of right operand. If yes, then the condition becomes true.

(A <= B) is

true.

Logical Operators

Following table shows all the logical operators supported by C language. Assume

variable A holds 1 and variable B holds 0, then −

Operator Description Example

&& Called Logical AND operator. If both the operands are non-

zero, then the condition becomes true.

(A && B) is

false.

|| Called Logical OR Operator. If any of the two operands is non-

zero, then the condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. It is used to reverse the logical

state of its operand. If a condition is true, then Logical NOT

operator will make it false.

!(A && B) is

true.

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables

for &, |, and ^ is as follows −

P Q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume A = 60 and B = 13 in binary format, they will be as follows −

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The following table lists the bitwise operators supported by C. Assume variable 'A'

holds 60 and variable 'B' holds 13, then −

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in

both operands.

(A & B) = 12, i.e.,

0000 1100

| Binary OR Operator copies a bit if it exists in either operand. (A | B) = 61, i.e.,

0011 1101

^ Binary XOR Operator copies the bit if it is set in one

operand but not both.

(A ^ B) = 49, i.e.,

0011 0001

~ Binary One's Complement Operator is unary and has the

effect of 'flipping' bits.

(~A) = ~(60),

i.e,. -0111101

<< Binary Left Shift Operator. The left operands value is

moved left by the number of bits specified by the right

operand.

A << 2 = 240 i.e.,

1111 0000

>> Binary Right Shift Operator. The left operands value is

moved right by the number of bits specified by the right

operand.

A >> 2 = 15 i.e.,

0000 1111

Assignment Operators

The following table lists the assignment operators supported by the C language −

Operator Description Example

= Simple assignment operator. Assigns values from right side

operands to left side operand

C = A + B will

assign the value

of A + B to C

+= Add AND assignment operator. It adds the right operand to

the left operand and assign the result to the left operand.

C += A is

equivalent to C =

C + A

-= Subtract AND assignment operator. It subtracts the right

operand from the left operand and assigns the result to the

left operand.

C -= A is

equivalent to C =

C - A

*= Multiply AND assignment operator. It multiplies the right

operand with the left operand and assigns the result to the

left operand.

C *= A is

equivalent to C =

C * A

/= Divide AND assignment operator. It divides the left operand

with the right operand and assigns the result to the left

operand.

C /= A is

equivalent to C =

C / A

%= Modulus AND assignment operator. It takes modulus using

two operands and assigns the result to the left operand.

C %= A is

equivalent to C =

C % A

<<= Left shift AND assignment operator. C <<= 2 is same

as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same

as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as

C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as

C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is same as

C = C | 2

Misc Operators ↦ sizeof & ternary

Besides the operators discussed above, there are a few other important operators

including sizeof and ? : supported by the C Language.

Operator Description Example

sizeof() Returns the size of a variable. sizeof(a), where a is integer, will return 4.

& Returns the address of a

variable.

&a; returns the actual address of the variable.

* Pointer to a variable. *a;

? :
Conditional Expression.

If Condition is true ? then value X : otherwise

value Y

Operators Precedence in C

Operator precedence determines the grouping of terms in an expression and decides

how an expression is evaluated. Certain operators have higher precedence than

others; for example, the multiplication operator has a higher precedence than the

addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has a

higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those

with the lowest appear at the bottom. Within an expression, higher precedence

operators will be evaluated first.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

C Expressions

An expression is a formula in which operands are linked to each other by the use of

operators to compute a value. An operand can be a function reference, a variable, an

array element or a constant.

Let's see an example:

a-b;

In the above expression, minus character (-) is an operator, and a, and b are the two

operands.

There are four types of expressions exist in C:

o Arithmetic expressions

o Relational expressions

o Logical expressions

o Conditional expressions

Each type of expression takes certain types of operands and uses a specific set of

operators. Evaluation of a particular expression produces a specific value.

For example:

1. x = 9/2 + a-b;

The entire above line is a statement, not an expression. The portion after the equal is

an expression.

Arithmetic Expressions

An arithmetic expression is an expression that consists of operands and arithmetic

operators. An arithmetic expression computes a value of type int, float or double.

When an expression contains only integral operands, then it is known as pure integer

expression when it contains only real operands, it is known as pure real expression,

and when it contains both integral and real operands, it is known as mixed mode

expression.

Evaluation of Arithmetic Expressions

The expressions are evaluated by performing one operation at a time. The

precedence and associativity of operators decide the order of the evaluation of

individual operations.

When individual operations are performed, the following cases can be

happened:

o When both the operands are of type integer, then arithmetic will be performed,

and the result of the operation would be an integer value. For example, 3/2

will yield 1 not 1.5 as the fractional part is ignored.

o When both the operands are of type float, then arithmetic will be performed,

and the result of the operation would be a real value. For example, 2.0/2.0 will

yield 1.0, not 1.

o If one operand is of type integer and another operand is of type real, then the

mixed arithmetic will be performed. In this case, the first operand is converted

into a real operand, and then arithmetic is performed to produce the real value.

For example, 6/2.0 will yield 3.0 as the first value of 6 is converted into 6.0

and then arithmetic is performed to produce 3.0.

Let's understand through an example.

6*2/ (2+1 * 2/3 + 6) + 8 * (8/4)

Evaluation of expression Description of each operation

6*2/(2+1 * 2/3 +6) +8 * (8/4) An expression is given.

6*2/(2+2/3 + 6) + 8 * (8/4) 2 is multiplied by 1, giving value 2.

6*2/(2+0+6) + 8 * (8/4) 2 is divided by 3, giving value 0.

6*2/ 8+ 8 * (8/4) 2 is added to 6, giving value 8.

6*2/8 + 8 * 2 8 is divided by 4, giving value 2.

12/8 +8 * 2 6 is multiplied by 2, giving value 12.

1 + 8 * 2 12 is divided by 8, giving value 1.

1 + 16 8 is multiplied by 2, giving value 16.

17 1 is added to 16, giving value 17.

Relational Expressions

o A relational expression is an expression used to compare two operands.

o It is a condition which is used to decide whether the action should be taken or

not.

o In relational expressions, a numeric value cannot be compared with the string

value.

o The result of the relational expression can be either zero or non-zero value.

Here, the zero value is equivalent to a false and non-zero value is equivalent

to true.

Relational

Expression

Description

x%2 = = 0 This condition is used to check whether the x is an even number or not. The relational expression

results in value 1 if x is an even number otherwise results in value 0.

a!=b It is used to check whether a is not equal to b. This relational expression results in 1 if a is not

equal to b otherwise 0.

a+b = = x+y It is used to check whether the expression "a+b" is equal to the expression "x+y".

a>=9 It is used to check whether the value of a is greater than or equal to 9.

Logical Expressions

o A logical expression is an expression that computes either a zero or non-zero

value.

o It is a complex test condition to take a decision.

Let's see some example of the logical expressions.

Let's see a simple program of "&&" operator.

1. #include <stdio.h>

2. int main()

3. {

4. int x = 4;

5. int y = 10;

6. if ((x <10) && (y>5))

7. {

8. printf("Condition is true");

9. }

10. else

11. printf("Condition is false");

12. return 0;

13. }

Output

Logical Expressions Description

(x > 4) && (x < 6) It is a test condition to check whether the x is greater than 4 and x is less than 6. The result of

the condition is true only when both the conditions are true.

x > 10 || y <11 It is a test condition used to check whether x is greater than 10 or y is less than 11. The result

of the test condition is true if either of the conditions holds true value.

! (x > 10) && (y =

= 2)

It is a test condition used to check whether x is not greater than 10 and y is equal to 2. The

result of the condition is true if both the conditions are true.

Let's see a simple example of "| |" operator

1. #include <stdio.h>

2. int main()

3. {

4. int x = 4;

5. int y = 9;

6. if ((x <6) || (y>10))

7. {

8. printf("Condition is true");

9. }

10. else

11. printf("Condition is false");

12. return 0;

13. }

Output

Conditional Expressions

o A conditional expression is an expression that returns 1 if the condition is true

otherwise 0.

o A conditional operator is also known as a ternary operator.

The Syntax of Conditional operator

Suppose exp1, exp2 and exp3 are three expressions.

exp1 ? exp2 : exp3

The above expression is a conditional expression which is evaluated on the basis of

the value of the exp1 expression. If the condition of the expression exp1 holds true,

then the final conditional expression is represented by exp2 otherwise represented

by exp3.

Let's understand through a simple example.

1. #include<stdio.h>

2. #include<string.h>

3. int main()

4. {

5. int age = 25;

6. char status;

7. status = (age>22) ? 'M': 'U';

8. if(status == 'M')

9. printf("Married");

10. else

11. printf("Unmarried");

12. return 0;

13. }

Output

MANAGING I/O OPERATIONS

As we all know the three essential functions of a computer are reading, processing

and writing data. Majority of the programs take data as input, and then after

processing the processed data is being displayed which is called information. In C

programming you can use scanf() and printf() predefined function to read and print

data.

I/O operations are useful for a program to interact with users. stdlib is the standard

C library for input-output operations. While dealing with input-output operations in

C, two important streams play their role. These are:

1. Standard Input (stdin)

2. Standard Output (stdout)

Standard input or stdin is used for taking input from devices such as the keyboard

as a data stream. Standard output or stdout is used for giving output to a device such

as a monitor. For using I/O functionality, programmers must include stdio header-

file within the program.

Reading a character in C

The easiest and simplest of all I/O operations are taking a character as input by

reading that character from standard input (keyboard). getchar() function can be

used to read a single character. This function is alternate to scanf() function.

Syntax:

var_name = getchar();

Example:

#include<stdio.h>

void main()

{

char title;

title = getchar();

}

There is another function to do that task for files: getc which is used to accept a

character from standard input.

Syntax:

int getc(FILE *stream);

Writing Character In C

Similar to getchar() there is another function which is used to write characters, but

one at a time.

Syntax:

putchar(var_name);

Example:

#include<stdio.h>

void main()

{

char result = 'P';

putchar(result);

putchar('\n');

}

Similarly, there is another function putc which is used for sending a single character

to the standard output.

Syntax:

int putc(int c, FILE *stream);

Formatted Input

It refers to an input data which has been arranged in a specific format. This is

possible in C using scanf(). We have already encountered this and familiar with this

function.

Syntax:

scanf("control string", arg1, arg2, ..., argn);

The field specification for reading integer inputted number is:

%w sd

Here the % sign denotes the conversion specification; w signifies the integer number

that defines the field width of the number to be read. d defines the number to be read

in integer format.

Example:

#include<stdio.h>

void main()

{

int var1= 60;

int var2= 1234;

scanf("%2d %5d", &var1, &var2);

}

Input data items should have to be separated by spaces, tabs or new-line and the

punctuation marks are not counted as separators.

Reading and Writing Strings in C

There are two popular library functions gets() and puts() provides to deal with

strings in C.

gets: The char *gets(char *str) reads a line from stdin and keeps the string pointed

to by the str and is terminated when the new line is read or EOF is reached. The

declaration of gets() function is:

Syntax:

char *gets(char *str);

Where str is a pointer to an array of characters where C strings are stored.

puts: The function - int puts(const char *str) is used to write a string to stdout, but it

does not include null characters. A new line character needs to be appended to the

output. The declaration is:

Syntax:

int puts(const char *str)

where str is the string to be written in C.

