Chapter 7 ,
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Transportation Model
I

7.1 Introduction | | |
Transportation deals with the transportation of a commodity (single

product) from ‘m’ sources (origins Qr supply or L"apacipf ccnt'res) to ‘n’
destinations (sinks or demand or requirement centres). It is assumed that
i) Level of supply at each source and the amount of demand at each
destination and
ii) The unit transportation cost of commodity from each source to

cach destination are known [given].
It is also assumed that the cost of transportation is linear.

The objective is to determine the amount 10 be shifted from each

source to each destination such that the total transportation cost IS
minimum.

Note : The transportation model also can be modified to account for
multiple commodities.

|. Mathematical Formulation of a Transportation Problem :

Let us assume that there are m sources and » destinations

Let a, be the supply (capacity) at source i, bj be the demand at

Liesl(;nallon J. ¢, be the unit transportation cost from source i to destination
J and x, be the number of units shifted from source i to destination j

Then t '
he transportation problem can be expressed mathematically as
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Note I: The two sets of constraints will be consistent if

m n
Z “l - Z hj
J=1

=1
(total supply) (total demand)

which is the necessary and sufficient condition for a transportation

problem to have a feasible soluticn. Problems satisfying this condition
are called balanced transportation problems.

Note 2: If > a,# 3 b, , then the transportation problem is said to be
unbalanced.

Note 3: For any transportation problem, the coefficients of all Xy in
the constraints are unity.

Note 4: The objective function and the constraints being all linear, the
transportation problem is a special class of linear programming problem.
Therefore it can be solved by simplex method. But the number of
variables being large, there will be too many calculations. So we can look

for some other technique which would be simpler than the usual simplex
method.

Standard transportation table:

Transportation problem is explicitly represented by the following
transportation table.
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___———2d cells. The unit transportation cost ¢, from
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1l e to the /" destination 1s displayed in the upper left side of the
the .J:;,SOL;T Any feasible solution is shown in the ti_lble by entering the
(- fu :'e,;' in the centre of the (ij) cell. The various a's and b's are
value ol . i

lled rim requirements. The feasibility of a solution can be verified by
o d down the column

' e rows and do g
cumming the values of x,, along th

Definition 1: A set of non-negative values x,, i = 12, m

L]

_ 1.2 n that satisfies the constraints (rim conditions and also the
‘:1un-n;02;livil)' restrictions) is called a feasible solution to the
transportation problem.

Note : A balanced transportation problem will always have a feasible

solution

Definition 2: A feasible solution to a (m x n) transportation problem
that contains no more than m + n —| non-negative allocations is called a
basic feasible solution (BFS) to the transportation problem.

The allocations are said to be in independent positions if it is
impossible to increase or decrease any allocation without either changing
the position of the allocation or violating the rim requirements. A simple
rule for allocations to be in independent positions is that it is impossible to
iravel from any allocation, back to itself by a series of horizontal and

vertical jumps from one occupied cell to another, without a direct reversal
of the route. Example
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Definition 4: A basic feasible solution that contains less than

m + n —1 non-negative allocations is said to be a degenerate basic feasible
solution.

Definition 5: A feasible solution (not necessarily basic) is said to be
an optimal selution it it minimizes the total transportation cost.

Note : The number of basic variables in an m x »n balanced
transportation problem is atmost m + n— 1.

Note : The number of non-basic variables in an m x »n balanced
transportation problem is atleast mn — (m + n - 1)

Il. Methods for finding initial basic feasible solution

The transportation problem has a solution if and only if the
problem is balanced. Therefore before starting to find the initial basic
Seasible solution, check whether the given transportation problem is
balanced. 1f not one has to balance the transportation problem first. The
way of doing this is discussed in section 7.4 page 7.40 In this section all
the given transportation problems are balanced.

Method 1 : North west Corner Rule :

Step [ @ The first assignment 1s made in thg cell occupying the upper
lefti-hand (north—west) corner of the transportation table. The maximum
possible amount is allocated there. That is x|, = min {a,,b,}.

Case (i) : Ifmin {a,, b/} = a,, then put x| = a,, decrease b by u,
and move vertically to the 2nd row (i.¢e.,) to the cell (2,1)
cross out the first row.

Case (i) : W min {a, b} = b, then put x;; = b, and decrease a,
by b, and move horizontally right (i.e.,) to the cell (1.2
cross out the first column
If min {a,, b} = a, = b, then put x| = a = by and move
diagonally to the cell (2,2) cross out the first row and the
first column.

Case (1ii)

L

Step 2: Repeat the procedure until all the rim requirements are
satisfied.

Method 2 : Least Cost method (or) Matrix minima method (or)
Lowest cost entry method :

Step 1 : Identify the cell with smallest cost and allocate v, ~Min
{ur,b_,} :
Ah
" » H — -. - — - - | [EALY
Case (i) = 1fmin{a, b} = a,.thenputy, =a, cross out the

- 5 i ]
and decrease b’ by a,. Go o slep (2)



5

I'ransportation Model 75

e ' _ he b
- bj then put x,, = bj cross out the ;

; If min {a.b)}

Case (ii) |
column and decrease a, by bj Go to step (2).

' =a, = = a, = b,, cross out
If min {a,b} = a, = by, then put x;, = a, b,
either i row or /" column but not both, Go to step (2).

Step 2 : Repeat step (1) for the resulting reduced transportation table

until all the rim requirements are satisfied.

Method 3: Vogel's approximation method (VAM) (or) Unit cost
penalty method : [MU. MBA. Nov 96, Apr 95, Apr 97/

Step 1 : Find the difference (penalty) between the smallest and next
smallest costs in each row (column) and write them in brackets against the

corresponding row (column).
Step 2 : ldentify the row (or) column with largest penalty. If a tie
occurs, break the tie arbitrarily. Choose the cell with smallest cost in that

selected row or column and allocate as much as possible to this cell and
Cross out the satisfied row or column and go to step (3).

Case (iii)

Step 3 : Again compute the column and row penalties for the reduced
transportation table and then go to step (2). Repeat the procedure until all
the rim requirements are satisfied.
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