Chapter 7

Transportation Model

7.1 Introduction

Transportation deals with the transportation of a commodity (single product) from ' m ' sources (origins or supply or capacity centres) to ' n ' destinations (sinks or demand or requirement centres). It is assumed that
i) Level of supply at each source and the amount of demand at each destination and
ii) The unit transportation cost of commodity from each source to each destination are known [given].
It is also assumed that the cost of transportation is linear.
The objective is to determine the amount to be shifted from each source to each destination such that the total transportation cost is minimum.

Note : The transportation model also can be modified to account for multiple commodities.

I. Mathematical Formulation of a Transportation Problem :

Let us assume that there are m sources and n destinations.
Let a_{i} be the supply (capacity) at source i, b_{j} be the demand at destination $j, c_{i j}$ be the unit transportation cost from source i to destination j and $x_{i j}$ be the number of units shifted from source i to destination j.

Then the transportation problem can be expressed mathematically as

$$
\text { Minimize } Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

subject to the constraints

$$
\begin{aligned}
\sum_{j=1}^{n} x_{i j} & =a_{i}, \quad i=1,2,3 \ldots m . \\
\sum_{i=1}^{m} x_{i j} & =b_{j}, \quad j=1,2,3 \ldots n . \\
\text { and } x_{i j} & \geq 0, \text { for all } i \text { and } j .
\end{aligned}
$$

Note 1: The two sets of constraints will be consistent if

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}
$$

(total supply) (total demand)
which is the necessary and sufficient condition for a transportation problem to have a feasible solutirn. Problems satisfying this condition are called balanced transportation problems

Note 2: If $\sum a_{i} \neq \sum b_{j}$, then the transportation problem is said to be unbalanced.

Note 3: For any transportation problem, the coefficients of all $x_{i j}$ in the constraints are unity.

Note 4: The objective function and the constraints being all linear, the transportation problem is a special class of linear programming problem. Therefore it can be solved by simplex method. But the number of variables being large, there will be too many calculations. So we can look for some other technique which would be simpler than the usual simplex method.

Standard transportation table:

Transportation problem is explicitly represented by the following transportation table.

Destination

Source	D_{1}		D_{2}	D_{3}	D,	D_{n}	Supplya_{1}
	S_{1}	c_{11}	c_{12}	c_{13}	$c_{1,}$	$c_{1 n}$	
	S_{2}	c_{21}	c_{22}	c_{23}	$c_{2,}$	$c_{2 n}$	a_{2}
	S	c_{11}	c_{12}		$c_{i j}$	c_{m}	$:$
	S_{m}	$c_{m 1}$	$c_{m, 2}$		$c_{n \prime \prime}$	$c_{m, n}$	a_{m}
Deman		h_{1}	b_{2}	h_{3}		b_{n}	$\sum a=\Sigma h$

The $m n$ squares are called cells. The unit transportation cost $c_{i j}$ from the $i^{t^{\text {th }}}$ source to the $j^{\text {th }}$ destination is displayed in the upper left side of the $(i, j)^{\text {th }}$ cell. Any feasible solution is shown in the table by entering the value of $x_{i,}$, in the centre of the $(i, j)^{\text {th }}$ cell. The various a 's and b 's are called rim requirements. The feasibility of a solution can be verified by summing the values of $x_{i j}$ along the rows and down the columns.

Definition 1: A set of non-negative values $x_{i j}, i=1,2, \ldots m$; $j=1,2 \ldots n$. that satisfies the constraints (rim conditions and also the non-negativity restrictions) is called a feasible solution to the transportation problem.

Note : A balanced transportation problem will always have a feasible solution.

Definition 2: A feasible solution to a $(m \times n)$ transportation problem that contains no more than $m+n-1$ non-negative allocations is called a basic feasible solution (BFS) to the transportation problem.

The allocations are said to be in independent positions if it is impossible to increase or decrease any allocation without either changing the position of the allocation or violating the rim requirements. A simple rule for allocations to be in independent positions is that it is impossible to travel from any allocation, back to itself by a series of horizontal and vertical jumps from one occupied cell to another, without a direct reversal of the route. Example

(i)

Non-independent positions

Non-independent positions

(ii)

Independent positions

	\odot		
\odot			\odot
	\odot	\odot	\odot

(ii)

Definition 3 : A basic feasible solution to a $(m \times n)$ transportation problem is said to be a non-degenerate basic feasible solution if it contains exactly $m+n-1$ non-negative allocations in independent
positions

Definition 4: A basic feasible solution that contains less than $m+n-1$ non-negative allocations is said to be a degenerate basic feasible solution.

Definition 5: A feasible solution (not necessarily basic) is said to be an optimal solution if it minimizes the total transportation cost.

Note : The number of basic variables in an $m \times n$ balanced transportation problem is atmost $m+n-1$.

Note : The number of non-basic variables in an $m \times n$ balanced transportation problem is atleast $m n-(m+n-1)$

II. Methods for finding initial basic feasible solution

The transportation problem has a solution if and only if the problem is balanced. Therefore before starting to find the initial basic feasible solution, check whether the given transportation problem is balanced. If not one has to balance the transportation problem first. The way of doing this is discussed in section 7.4 page 7.40 In this section all the given transportation problems are balanced.

Method 1 : North west Corner Rule :

Step i : The first assignment is made in the cell occupying the upper left-hand (north-west) corner of the transportation table. The maximum possible amount is allocated there. That is $x_{11}=\min \left\{a_{1}, b_{1}\right\}$.

Case (i): If $\min \left\{a_{1}, b_{1}\right\}=a_{1}$, then put $x_{11}=a_{1}$, decrease b_{1} by a_{1} and move vertically to the 2 nd row (i.e., to the cell $(2,1)$ cross out the first row.
Case (ii) : If $\min \left\{a_{1}, b_{1}\right\}=b_{1}$, then put $x_{11}=b_{1}$, and decrease a_{1} by b_{1} and move horizontally right (i.e.,) to the cell $(1,2)$ cross out the first column
Case (iii) : If $\min \left\{a_{1}, b_{1}\right\}=a_{1}=b_{1}$ then put $x_{11}=a_{1}=b_{1}$ and move diagonally to the cell $(2,2)$ cross out the first row and the first column.

Step 2: Repeat the procedure until all the rim requirements are satisfied.

Method 2 : Least Cost method (or) Matrix minima method (or) Lowest cost entry method:

Step 1 : Identify the cell with smallest cost and allocate $x_{i j}=$ Min $\left\{a_{1}, b_{j}\right\}$

Case (i): If $\min \left\{a_{i}, b_{j}\right\}=a_{i}$, then put $x_{i j}=a_{i}$. cross out the $i^{\text {th }}$ row and decrease b, by a_{i}, Go to step (2)

Case (ii): If $\min \left\{a_{i}, b_{j}\right\}=b_{j}$ then put $x_{i j}=b_{j}$ cross out the $j^{\text {th }}$ column and decrease a_{i} by b_{j} Go to step (2).
Case (iii) : If $\min \left\{a_{i}, b_{j}\right\}=a_{i}=b_{j}$, then put $x_{i j}=a_{i}=b_{j}$, cross out either $i^{\text {th }}$ row or $j^{\text {th }}$ column but not both, Go to step (2).
Step 2 : Repeat step (1) for the resulting reduced transportation table until all the rim requirements are satisfied.

Method 3: Vogel's approximation method (VAM) (or) Unit cost penalty method: [MU. MBA. Nov 96, Apr 95, Apr 97]

Step 1: Find the difference (penalty) between the smallest and next smallest costs in each row (column) and write them in brackets against the corresponding row (column).

Step 2 : Identify the row (or) column with largest penalty. If a tie occurs, break the tie arbitrarily. Choose the cell with smallest cost in that selected row or column and allocate as much as possible to this cell and cross out the satisfied row or column and go to step (3).

Step 3 : Again compute the column and row penalties for the reduced transportation table and then go to step (2). Repeat the procedure until all the rim requirements are satisfied.

TP. Northewest corner Ruli' (1)

1. Calcuate the r.b.f.s to the tollowing TPP.

	S_{1}	S_{2}	S_{3}	Availabl.
W_{1}	5	4	2	86
w_{2}	4	7	6	$\sqrt{2} 8$
w_{3}	2	5	8	12

$\begin{array}{lllll} \\ & 1 & 6 & 7\end{array}$
Requirment $81012,30^{\circ}$
solution:
$\sum a i=S b_{j}$, thatin Avirkble $=$ Requi
\therefore The gnt $p_{S 1}$. is Balanud Tre.

\therefore The $\because b f s$ is $x_{11}=6, x_{21}=2, x_{22} 6$,

$$
x_{32}=4, x_{33}=8, x_{43}=4
$$

\therefore Total transportation cost $=\sum_{i} \sum_{i} c_{j} x_{i}$

$$
\begin{aligned}
= & (6 \times 5)+(2 \times 4)+(6 \times 7)+(4 \times 5)+(8 \times 8)^{\prime}+1 \\
& 30+8 \times 7) \\
& +42+20+64+28=192 .
\end{aligned}
$$

2. Solve the following TPP using $N-W C_{R}$. Destination

| | D_{1} | D_{2} | D_{3} | D_{4} |
| :---: | :---: | :---: | :---: | :---: | supply

Demand $2040 \quad 3010 \quad 100$
sn

Demand af 403610100
\therefore The of \& is $x_{11}=20, x_{12}=10, x_{2}=30$

$$
\begin{aligned}
& x_{23}=20, x_{33}=10, x_{34}=10 \\
& \text { Total cost }=\sum_{i} \sum_{i} c_{i j}^{\prime \prime} x_{i j}^{\prime} \\
& =(20 \times 1)+(10 \times 2)+(30 \times 3)+(20 \times 2)+(10 \times 5) \\
& 20+20+90+40+50+90=310 .
\end{aligned}
$$

Least wost Method.
1.Obtain e-b. \&.S.

Available.

w_{1}	5	4	3
w_{2}	4	7	6
w_{3}	2	5	8
w_{4}	8	6	7

6

Reg.
$8 \quad 1012 \quad 30$.
S_{n}

$$
\therefore \text { The } x \text { is } S \text { is } x_{13}=b, x_{22}=2, x_{23}=6
$$

$$
x_{31}=8, x_{32}=4, x_{42}=4
$$

\therefore The Totd $\cos 1=\sum_{j} \sum_{j} c_{i j} x_{i}{ }_{j}$

$$
\begin{aligned}
& \text { The totel asi } \\
& =(6 \times 3)+(2 \times 7)+6 \times 6)+(8 \times 2)+(4 \times 5)+4 \times 6)
\end{aligned}
$$

2. obtain Leas f cost Method.
$S_{1} S_{2} S_{3} s_{4}$ Available
$\begin{array}{cccccc}A & 5 & 2 & 4 & 3 & 22 \\ B & 1 & 8 & 1 & 6 & 15 \\ C & 4 & 6 & 6 & 5 & 8 \\ \text { ant } & 7 & 12 & 7 & 19 & 45\end{array}$
Sn $\Sigma a_{i}=\sum b_{j}$, BTPP.

\therefore The $b-7$ s. is

$$
\begin{aligned}
& x_{12}=12, x_{13}=10, x_{21}=7, x_{23}=7, x_{2}=1 \\
& x_{34}=8: \therefore \text { Total cost }=\sum_{i} \sum_{i j} x_{i j} \\
& =(12 \times 2)+(10 \times 3)+(7 \times 4)+(7 \times 1)+(1 \times 6)+(8 \times 5) \\
& =24+30+28+7+6+40=135
\end{aligned}
$$

Procedure $f o r$ the Least cost motend or Matrix Minima method.

Step 1. Ideritity the cell smallest cost and allocate $x i j=\min \left(a i, b_{j}\right)$
case i) If $\operatorname{Mine}\left(a_{i}, b_{j}\right)=a_{i}$ then put $x_{i j}=a_{i}$ cross cut the i^{t} row and decreas bi by ai bot to slop 2 .
Case-ii) If Mini $\left(a_{i}, b_{j}\right)=b_{j}$, then put $x_{i j}=b_{j}$ cross out the $j^{\text {th }}$ coleen and decreage di by bi Go to stop 2.
case iii) If $\operatorname{Mix}\left(a_{i} b_{j}\right)=a_{i}=b_{j}$ then put $x_{i j}-a^{\prime}=$ cross oct the i^{H} row or $j^{t h}$ column bul both, to to slope 2 .
Step 2. Repeat step 1. For the resulting redued trass portation table untill all the rim requirement ale satisfied.
Voges Appronituction me thad
step. Find the difference (penalet, b/w the smallest and rent smallest west in each row (Column) and wink them it brackets againgt the corresponding row(Column)

Step 2: Identify row or column with largest peoalits, If a tie occurs break the til oubitrarily: chose tell with smallest wist in that selected row or column and allocate is much as possible to this all and cross out the satistiod sow on when and gobs steps.
Step 3: Again compute the column row peralitics fir the reduced F table and then go torte 2 . Repeat the

