

GOVERNMENT ARTS COLLEGE (AUTONOMOUS) COIMBATORE 641 018

DEPARTMENT OF PHYSICS

M.Sc. PHYSICS

CURRICULUM AND SYLLABUS

Under Choice Based Credit System (CBCS) 2018-2019 Onwards

GOVERNMENT ARTS COLLEGE (AUTONOMOUS), COIMBATORE 641 018 DEPARTMENT OF PHYSICS <u>M.Sc. PHYSICS CURRICULUM FOR THE STUDENTS ADMITTED FROM 2018-2019 ONWARDS</u> UNDER CHOICE BASED CREDIT SYSTEM (CBCS)

<u>SEMESTER – I</u>

S.	Subject Code	Part	Title of the Paper	Credit	Ma	aximum Mark	s	Exam	Hrs/	Passing Mi	inimum
No.					Internal	External	Total	Duration	Week	External	Total
1.	18MPH11C	А	Paper 1: Classical and Statistical Mechanics	4	25	75	100	3 Hrs	5	38	50
2.	18MPH12C	А	Paper 2: Quantum Mechanics - I	4	25	75	100	3 Hrs	5	38	50
3.	18MPH13C	А	Paper 3: Mathematical Physics	4	25	75	100	3 Hrs	5	38	50
4.	18MPH14E	В	Elective I: Problems in Advanced Physics – 1	4	25	75	100	3 Hrs	3	38	50
			TOTAL	16			400		18		
5.		А	Practical I: General Experiments	Examination at the end of Second Semester			Semester	6			
6.		А	Practical II: General Electronic	Examination at the end of Second Semester			Semester	6			

<u>SEMESTER – II</u>

S.	Subject Code	Part	Title of the Paper	Credit	Ma	aximum Marks	5	Exam	Hrs/	Passing Mi	inimum
No.					Internal	External	Total	Duration	Week	External	Total
1.	18MPH21C	А	Paper 4: Quantum Mechanics - II	4	25	75	100	3 Hrs	5	38	50
2.	18MPH22C	А	Paper 5: Solid State Physics	4	25	75	100	3 Hrs	5	38	50
3.	18MPH23C	А	Paper 6: Electromagnetic Theory	4	25	75	100	3 Hrs	5	38	50
4.	18MPH24E	В	Elective II: Problems in Advanced Physics – 2	4	25	75	100	3 Hrs	3	38	50
5.	18MPH25P	А	Practical I: General Experiments	3	40	60	100	4 Hrs	6	30	50
6.	18MPH26P	А	Practical II: General Electronic	3	40	60	100	4 Hrs	6	30	50
			TOTAL	22			600		30		

<u>SEMESTER – III</u>

S.	Subject Code	Part	Title of the Paper	Credit	Ma	aximum Mark	s	Exam	Hrs/	Passing Mi	nimum
No.					Internal	External	Total	Duration	Week	External	Total
1.	18MPH31C	А	Paper 7: Molecular Spectroscopy	4	25	75	100	3 Hrs	5	38	50
2.	18MPH32C	А	Paper 8: Nuclear Physics	4	25	75	100	3 Hrs	5	38	50
3.	18MPH33C	А	Paper 9: Advanced Electronics	4	25	75	100	3 Hrs	5	38	50
4.	18MPH34E	В	Elective III: Problems in Advanced Physics – 3	4	25	75	100	3 Hrs	3	38	50
			TOTAL	16			400		18		
5.		А	Practical III: Advanced Experiments	Examination at the end of Fourth Semester			6				
6.		А	Practical IV: Microprocessor and Special Electronics	Exam	ination at	the end of	Fourth	Semester	6		

<u>SEMESTER – IV</u>

S.	Subject Code	Part	Title of the Paper	Credit	Ma	aximum Marks	5	Exam	Hrs/	Passing Mi	nimum
No.					Internal	External	Total	Duration	Week	External	Total
1.	18MPH41C	А	Paper 10: Material Science	4	25	75	100	3 Hrs	5	38	50
2.	18MPH42C	А	Paper 11: Optical and Thin Film Physics	4	25	75	100	3 Hrs	5	38	50
3.	18MPH43C	А	Paper 12: Numerical Methods and Object	4	25	75	100	3 Hrs	5	38	50
			Oriented Programming in C ⁺⁺								
4.	18MPH44P	В	Elective IV: Soft Skill	3	40	60	100	4 Hrs	3	30	50
			(ONLY PRACTICAL & VIVA-VOCE EXAMINATION)								
5.	18MPH45P	А	Practical III: Advanced Experiments	3	40	60	100	4 Hrs	6	30	50
6.	18MPH46P	Α	Practical IV: Microprocessor and Special	3	40	60	100	4 Hrs	6	30	50
			Electronics								
7.	18MPH47V	А	Project and Viva-voce	15	20	80	100			40	50
			TOTAL	36			700		30		

Subject	Part	No. of Papers	Credit/Paper	Total Credit	Total Marks
Core Papers	A	12	4	48	1200
Practical Papers	А	4	3	12	400
Project and Viva-voce	А	1	15	15	100
Elective – Theory	В	3	4	12	300
Elective – Practicals	В	1	3	3	100
Total		21		90	2100

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 1: Classical and Statistical Mechanics	Ι	18MPH11C

<u>Objective</u>: To understand the concepts of classical mechanics and statistical mechanics

UNIT 1:

Mechanics of a System of Particles and Lagrangian Formulation: Mechanics of a system of particles – Conservation of linear momentum - Conservation theorem for angular momentum – Conservation of energy – Hamilton's variational principle - Deduction of Lagrange's equations of motion from Hamilton's principle.

Hamiltonian Formulation of Mechanics: Hamiltonian – Hamilton's canonical equations of motion – Advantage of Hamiltonian approach – Concept of Principle of least action – Canonical transformations – Generating function – Condition for a transformation to be canonical.

UNIT 2:

Hamilton-Jacobi Theory: Hamilton-Jacobi method – Hamilton-Jacobi equation for Hamilton's characteristic function - Solution of harmonic oscillator problem by HJ method – Action and angle variables – Solution of harmonic oscillator problem by AAV method – Lagrange's brackets

Mechanics of Small Oscillations: Stable and unstable equilibrium – Lagrange's equations of motion for small oscillations – Normal co-ordinates and normal frequencies of vibration – The Parallel pendula – Double pendulum – Linear triatomic molecule.

UNIT 3:

Rigid Body Dynamics: Generalised co-ordinates for rigid body motion – Euler's theorem – Chasles' theorem – Euler's angles – Angular momentum of rigid body: Angular velocity, Angular momentum and Moments and products of inertia – Principal axes transformation – Equations of motion of a rigid body: Euler's equations – The motion of a symmetric top under the action of gravity.

UNIT 4:

Classical Statistics: Maxwell-Boltzmann distribution law – Maxwell's law of distribution of velocities – Mean values obtained from distribution law: Most probable speed, Mean speed, Mean square speed and Root mean square speed – Principle of equipartition of energy – Derivation of mean energy of harmonic oscillator -Microcanonical ensemble – Relation of entropy of a system in statistical equilibrium with thermodynamic quantities – Gibbs paradox – Partition function - Gibbs canonical ensemble – Grand canonical ensemble.

UNIT 5:

Quantum Statistics: Bose-Einstein statistics – Ideal BE gas: Gas degeneracy and Bose-Einstein condensation – Black body radiation and the Planck's radiation law - Fermi-Dirac statistics – Ideal FD gas: Electron gas, Free electron model and electronic emission – White dwarfs.

Books for Study:

- 1. Classical Mechanics by S. L. Gupta, V. Kumar and H. V. Sharma (Units 1, 2 and 3)
- 2. Statistical Mechanics by S. L. Gupta and V. Kumar (Units 4 and 5)

- 1. Classical Mechanics by Herbert Goldstein
- 2. Classical Mechanics by Satya Prakash
- 3. Statistical Mechanics by Satya Prakash

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 2: Quantum Mechanics - I	Ι	18MPH12C

<u>Objective</u>: To learn the concept of quantum mechanics and their applications in microscopic systems.

Unit 1: General formalism of quantum mechanics

Hilbert Space – Linear Operator – Eigen Functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous Measurability of Observables – General Uncertainty Relation – Dirac's Notation – Equations of Motion; Schrodinger, Heisenberg and Dirac representation – momentum representation.

Unit 2: Energy Eigen value problems

Particle in a box – Linear Harmonic oscillator – Tunneling through a barrier – particle moving in a spherically symmetric potential – System of two interacting particles – Rigid rotator – Hydrogen atom

Unit 3: Angular Momentum

Orbital Angular Momentum – Spin Angular Momentum – Total Angular Momentum Operators-Commutation Relations of Total Angular Momentum with Components – Ladder operators – Commutation Relation of Jz with J+ and J- - Eigen values of J2, Jz- Matrix representation of J^2 , J_z , J^+ and J^- – Addition of angular momenta – Clebsch Gordon Coefficients – Properties.

Unit 4: Approximation Methods

Time Independent Perturbation Theory in Non -Degenerate Case – Normal He atom – Degenerate Case – Stark Effect in Hydrogen atom – Variation Method – WKB Approximation and its validity condition – Transmission through a barrier

Unit 5: Many Electron Atoms

Indistinguishable particles – Pauli principle- Inclusion of spin – spin functions for twoelectrons – The Helium Atom – Central Field Approximation – Thomas-Fermi model of the Atom – Slater rules – Examples – Hund's rule – Hartree Equation – Hartree-Fock equation – Treatment of molecules – Born Oppenheimer approximation – Feynman rules.

Books for Study:

- 1. Quantum Mechanics Sathya Prakash and Swati Saluja
- 2. Quantum Mechanics S.L. Gupta, V. Kumar, H.V. Sharma
- 3. Quantum Chemistry Fourth Edition by IRAN Levine

Books for Reference:

1. A Text Book of Quantum Mechanics-P.M. Mathews & K. Venkatesan, Tata McGraw Hill 2010.

- 2. Quantum Mechanics G. Aruldhas Prentice Hall of India 2006
- 3. Introduction to Quantum Mechanics David J.Griffiths Pearson Prentice Hall 2005
- 4. Quantum Mechanics L.I. Schiff McGraw Hill 1968
- 5. Quantum Mechanics-A. Devanathan-Narosa Publishing-New Delhi

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 3:Mathematical Physics	Ι	18MPH13C

<u>Objective</u>: To learn various mathematical concepts and techniques and to solve physics problems

UNIT 1: Complex Variables

Function of a complex variable – Analytic function – Harmonic functions – Problems – Complex integration – Cauchy's theorem – Cauchy's integral formula – Taylor's expansion – Laurent's expansion – Residue and contour integration – Cauchy's residue theorem – Computation of residue – Evaluation of definite integrals (without Jordan's lemma).

UNIT 2: Differential Equations and Special Functions

Bessel's equations – solution – Function of first kind – Half order function – Recurrence formula – Generating function, Legendre's equations – solution – Polynomials – Generating function – Recurrence relations – Rodrigue's formula – Orthogonality property, Hermite's equations – solution – Polynomials – Generating function – Recurrence formulae – Rodrigue's formula – Orthogonality property.

UNIT 3: Fourier series and Integrals

Definition – Evaluation of coefficients – Even and odd functions – Dirichlet's theorem and Dirichlet's conditions – half range series in interval 0 to π – change of interval from (- π , π) to (-1, 1) – complex form of Fourier series – Fourier series in interval (0, T) – uses of Fourier series – physical examples (square, saw tooth and triangular) – properties – Parseval's Identity – Fourier Integrals.

UNIT 4: Laplace Transform

Definition – conditions for existence and proof of their validity – properties – Laplace transform of some simple functions – Laplace transform of derivative – Laplace transform of an integral – Laplace transform of periodic functions – Inverse Laplace transform – Fourier Mellin theorem – Evaluation of inverse Laplace transform by Bromwich integral – properties – Application of Laplace transform.

UNIT 5: Group Theory

Concept of group – Abelian groups – Generation of finite group – Group multiplication table – Rearrangement theorem – subgroup – Lagrange theorem – Cosets – Conjugate elements and classes – Normal subgroups – Factor groups – Isomorphism and Homomorphism – group of symmetry of an equilateral triangle and square.

Books for Study:

1. Mathematical Physics with Classical Mechanics by Sathyaprakash, Sulthan Chand & Sons

- 1. Advance Engineering Mathematics by Kreyzig, Wiley Eastern
- 2. Mathematical Physics by Arfen and Weber
- 3. Mathematical Physics by BD Gupta, Vikas Publishing House 2nd Edition 1997
- 4. Mathematical physics by Rajput, PragathiPrakashan
- 5. Elements of Group theory for Physicists by Joshi , Wiley Eastern

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Elective-I: Problems in Advanced Physics – 1	Ι	18MPH14E

<u>Objective</u>: To develop problem solving skills in students and to motivate them to appear national level competitive examinations with confidence

UNIT 1: Mathematical Methods of Physics

Dimensional analysis - Vector algebra and vector calculus - Linear algebra – matrices – Cayley Hamilton Theorem – Eigen values problems - Linear ordinary differential equations - Special functions (Hermite, Bessel, Laguerre and Legendre functions) - Fourier series - Fourier and Laplace transforms - Elements of complex analysis - Laurent series; poles, residues and evaluation of integrals – Elementary ideas about tensors - Introductory group theory - SU(2), O(3) - Elements of computational techniques - root of functions, interpolation, extrapolation, integration by trapezoid and Simpson's rule, Solution of first order differential equation using Runge-Kutta method - Finite difference methods - Elementary probability theory, random variables, binomial, Poisson and normal distributions.

UNIT 2: Classical Mechanics

Newton's laws - Phase space dynamics, stability analysis - Central force motions - Two body Collisions, Scattering in laboratory and Centre of mass frames - Rigid body dynamics, moment of inertia tensor, non-inertial frames and pseudo forces - Variational principle, Lagrangian and Hamiltonian formalism and equations of motion - Poisson brackets and canonical transformations - Symmetry, invariance and conservation laws and cyclic coordinates - Periodic motion: small oscillations, normal modes - Special theory of relativity, Lorentz transformations, relativistic kinematics and mass–energy equivalence.

Books for Study:

CSIR-UGC NET/JRF/SET Physical Science by Dr. Surekha Tomar UpkarPrakahan, Agra (NOTE: Problems only from Book for Study)

<u>Question Paper Pattern</u>:

Part A	25 Multiple Choice Questions (13 questions from Unit 1 & 12 questions from Unit 2)	Unit 1: Pages: 38 – 55 Unit 2: Pages: 148 – 168	25×1=25
Part B	Unit 1 (Any 5 Questions out of 9)	Pages: 101 – 122	5×5=25
Part C	Unit 2 (Any 5 Questions out of 9)	Pages: 185 – 205	5×5=25
		Total	75

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 4: Quantum Mechanics – II	II	18MPH21C

<u>Objective</u>: To introduce time dependent perturbation theory, scattering theory, role of relativity in quantum mechanics and quantum field theory

Unit 1: Time Dependent Perturbation Theory

Time Dependent Perturbation Theory-First and Second Order Transitions-Transition to Continuum of States-Fermi Golden Rule-Constant and Harmonic Perturbation- Collision-Adiabatic and Sudden Approximation - Charged Particle in an Electromagnetic Field.

Unit 2: Scattering Theory

Scattering Amplitude - Expression in terms of Green's Function - Born Approximation and Its validity- Partial wave analysis - Phase Shifts – Asymptotic behaviour of Partial Waves-The Scattering Amplitude in Terms of Phase Shift- Scattering by Coulomb Potential and Yukawa Potential.

Unit 3: Theory of Radiation (Semi Classical Treatment)

Einstein's Coefficients-Spontaneous and Induced Emission of Radiation from Semi Classical Theory-Radiation Field as an Assembly of Oscillators-Interaction with Atoms-Emission and Absorption Rates-Density Matrix and its Applications.

Unit 4: Relativistic Wave Equation

Klein Gordon Equation-Plane Wave Equation-Charge and Current Density-Application to the Study of Hydrogen Like Atom-Dirac Relativistic Equation for a Free Particle-Dirac Matrices -Dirac Equation in Electromagnetic Field - Negative Energy States.

Unit 5: Quantum Field Theory

Quantization of Wave Fields- Classical Lagrangian Equation-Classical Hamiltonian Equation - Field Quantization of the Non-Relativistic Schrodinger Equation-Creation, Destruction and Number Operators-Anti Commutation Relations-Quantization of Electromagnetic Field Energy and Momentum.

Books for Study:

- 1. Quantum Mechanics Satya Prakash
- 2. Quantum Mechanics S.L. Gupta, V. Kumar, H.V. Sharma

Books for Reference:

1. Text Book of Quantum Mechanics -P.M. Mathews & K. Venkatesan-Tata McGraw Hill 2010

- 2. Quantum Mechanics G Aruldhas Prentice Hall of India 2006
- 3. Introduction to Quantum Mechanics David J.Griffiths Pearson Prentice Hall, 2005
- 4. Quantum Mechanics A Devanathan Narosa Publishing-New Delhi
- 5. Quantum Mechanics L.I Schiff McGraw Hill 1968
- 6. Quantum Mechanics A.K. Ghatak and S. Loganathan-McMillan India
- 7. Principles of Quantum Mechanics R.Shankar, Springer 2005

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 5: Solid State Physics	II	18MPH22C

<u>Objective</u>: To learn the crystal structure, vibrational, thermal, electronic and optical properties of solid state systems

UNIT 1:

Reciprocal lattice: Unit cell – Space lattice – Bravais lattices – Miller indices – Graphical construction of reciprocal lattice – Vector development of reciprocal lattice – Properties of reciprocal lattice – Reciprocal lattice to simple cubic, bcc and fcc lattice.

Crystal Diffraction: Bragg's law – correction – Bragg's law in three dimensions – Von Laue treatment – Powder photograph method – Determination of unit cell dimensions – Diffraction of electrons and neutrons.

UNIT 2:

Imperfections in Crystals: Classification of defects – Point defects – Schottky defect – Expression for number of vacancies – Frenkel defect – Expression for number of vacancies – Colour centres – F and F' centres – Line defects: Edge and Screw dislocation & Grain boundaries.

Bonding in Solids: Ionic bonding – Energy of formation of NaCl molecule – Madelung Constant (linear array and three dimension) – Potential energy diagram – Cohesive energy – Calculation of Repulsive exponent – Born-Haber cycle – Characteristics of ionic bond – Characteristics of covalent, metallic, molecular and hydrogen bonding.

UNIT 3:

Lattice vibrations: Elastic vibrations of continuous media – Vibrations of one dimensional monoatomic lattice – Group and phase velocities – Normal modes of vibration – Vibration of one dimensional diatomic lattice – Optical and acoustical branch – Forbidden frequency band – Facts about diatomic lattice.

Thermal properties of Solids: Classical theory of lattice specific heat – Einstien's theory – Debye's model – Debye approximation – Limitations.

UNIT 4:

Free Electron Theory of Metals: Free electron gas – Drude and Lorentz theory – Electrical and thermal conductivities – Wiedmann and Franz ratio – Variation of electrical resistivity with temperature – Sommerfeld quantum model – Energy levels, density of states and Fermi energy (in one dimension) – Electronic Specific heat – Thermionic emission – Richardson and Dushman equation- Schottky effect – Failure of free electron model.

UNIT 5:

Band Theory of Solids: Energy spectra in atoms, molecules and solids – Wave equation in a periodic potential – Bloch theorem – Kronig-Penny model – Brillouin Zones in two dimensional square lattice – Distinction between metals, insulators and semiconductors.

Optical phenomena in Crystals: Photoconductivity – Absorption edge of crystals – Photosensitivity – Types of traps – Excitons – Luminescence

Book for Study:

1. Solid State Physics, S.L. Gupta and V. Kumar, K. Nath& Co.

- 1. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern Ltd.
- 2. Solid State Physics, A. J. Dekker, Macmillan India Ltd.
- 3. Solid State Physics, R.L. Singhal, Kedar Nath Ram Nath & Co.4. Solid State Physics, S.L. Kakani & C. Hemarajani, Sultan Chand & Sons.

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 6: Electromagnetic Theory	II	18MPH23C

<u>Objective</u>: To educate the basic concepts of electrostatics, magnetostatics, field equations, propagation of EM waves, interaction of EM waves with matter and field of moving charges and radiating systems

Unit 1: Electrostatics and Magnetostatics

Gauss law - Dielectric and its polarisation – Electric displacement – Dielectric constant – Polarisibility – Polarisation of non-polar molecules: Lorentz equation for molecular field – Clausius-Mosotti relation – Polarisation of polar molecules: The Langevin equation – The Debye relation and study of molecular structure – Electrostatic energy-Current density – Biot Savart law – Ampere's Circuital law - Lorentz force law – Magnetic scalar potential – Magnetic vector potential – Magnetisation and Magnetisation current – Magnetic Intensity, Magnetic Susceptibility and Permeability.

Unit 2: Field Equation and Propagation of EM waves

Equation of continuity - Displacement current - Maxwell's equations – Physical significance -Poynting vector - Electromagnetic potentials **A** and φ – Maxwell's equations interms of electromagnetic potentials - Non-uniqueness of electromagnetic potentials and concept of gauge – Lorentz gauge – Propagation of electromagnetic waves in free space - Propagation of E.M.W. in isotropic dielectrics - Propagation of E.M.W. in anisotropic dielectrics - Propagation of E.M.W. in Conducting media – Wave guide (Rectangular).

Unit 3: Interaction of EM waves with matter

Boundary Conditions at the interface between two media – Reflection and refraction of electromagnetic waves - Kinematic and dynamic properties – Fresnel's formula – Brewster's law and Polarisation of electromagnetic waves – Total internal reflection and critical angle – Reflection from metallic surface.

Scattering and scattering parameters – Scattering by a free electron – Scattering by a bound electron – Dispersion: Normal and Anomalous – Dispersion in gases – Dispersion in liquids and solids.

Unit 4: Fields of Moving Charges and Radiating Systems

Retarded potentials – Lienard-Wiechert potentials - Fields of a point charge in uniform rectilinear motion – Fields of a point charge in arbitrary motion – Radiation from an accelerated charged particle at low velocity – Radiation from an accelerated charged particle at high velocity.

Oscillating electric dipole - Radiation from an Oscillating dipole – Radiation from small current element – Radiation from a linear antenna (Half wave) and Antenna Arrays (Qualitative treatment).

Unit 5: Relativistic Electrodynamics

Purview of special theory of relativity – Four vectors and Tensors – Transformation equations for ρ and **J** – Transformation equations for **A** and ϕ – Transformation equations for field vectors **E** and **B** – Covariance of Maxwell's equations in 4-vectors – Covariance of Maxwell's equations in 4-Tensor forms – Covariance and transformation law of Lorentz force.

Book for Study:

1. Electromagnetic Theory by Chopra and Agarwal (K.Nath & Co., Meerut)

- 1. Electrodynamics by Gupta Kumar and Singh (Pragathi Prakasan, Meerut)
- 2. Electromagnetic theory and electrodynamics by Sathya Prakash (K.Nath & Co., Meerut)
- 3. Classical Electrodynamics by J. D. Jackson (Wiley Eastern Ltd., New Delhi)

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Elective-II: Problems in Advanced Physics – 2	II	18MPH24E

<u>Objective</u>: To develop problem solving skills in students and to motivate them to appear national level competitive examinations with confidence

UNIT 1: Quantum Mechanics

Wave-particle duality - Wave-function in coordinate and momentum representations -Commutators and Heisenberg's uncertainty principle – Matrix representation – Dirac's bra and ket notation - Schrödinger equation (time-dependent and time-independent) – Eigen value problems such as particle in a box, harmonic oscillator, etc.- Tunneling through a barrier -Motion in a central potential - Orbital angular momentum, Angular momentum algebra, spin -Addition of angular momenta - Hydrogen atom ,spin-orbit coupling, fine structure - Timeindependent perturbation theory and applications - Variational method WKB approximation -Time dependent perturbation theory and Fermi's golden rule - Selection rules –Semi-classical theory of radiation – Elementary theory of scattering, phase shift, partial waves, Born approximation - Identical particles – Pauli's exclusion principle - Spin-statistics connection – Klein Gordon and Dirac equations

UNIT 2: Electromagnetic Theory

Electrostatics: Gauss's law and its Applications-Laplace and Poisson equations, boundary value problems- Magneto statics: Biot-Savart law, Ampere's theorem. Electromagnetic induction-Maxwell's equations in free space and linear isotropic media- Boundary conditions on the fields at interfaces-Scalar and vector potentials- gauge invariance- Electromagnetic waves in free space, Dielectrics and conductors- Reflection and refraction, polarization, Fresnel's law, interference, coherence, and diffraction- Dynamics of charged particles in static and uniform electromagnetic fields- Radiation from moving charges, dipoles and retarded potentials.

Books for Study:

CSIR-UGC NET/JRF/SET Physical Science by Dr. Surekha Tomar UpkarPrakahan, Agra(NOTE: Problems only from Book for Study)

Question Paper Pattern:

Part A	25 Multiple Choice Questions (13 questions from Unit 1 & 12 questions from Unit 2)	Unit 1: Pages: 330 – 348 Unit 2: Pages: 224 – 244	25×1=25
Part B	Unit 1 (Any 5 Questions out of 9)	Pages: 388 – 424	5×5=25
Part C	Unit 2 (Any 5 Questions out of 9)	Pages: 285 – 301, 305 – 307,	5×5=25
		312, 313	
		Total	75

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	PRACTICAL – I – GENERAL EXPERIMENTS Examination at the end of SECOND Semester (Any 12)	II	18MPH25P

<u>Objective</u>: To develop the ability to handle physics laboratory equipments with ease and to determine various physical constants using appropriate experiments

- 1. Young's Modulus Elliptical fringes (Cornu's Method)
- 2. Young's Modulus Hyperbolic fringes (Cornu's Method)
- 3. Stefan's constant
- 4. Rydberg's constant Solar Spectrum
- 5. e/m by Thomson's Method
- 6. Thermal conductivity by Forbe's Method
- 7. Viscosity of liquid by Mayer's Disc Method
- 8. Specific heat of liquid by Ferguson's method
- 9. Thermistor Determination of Temperature co-efficient and Band gap energy
- 10. Diffraction at a prism table Determination of wavelength
- 11. Four Probe Method High Conductivity sample
- 12. Four Probe Method Low Conductivity sample
- 13. Laser Experiments
- 14. Biprism on Optical bench Determination of wavelength
- 15. Spectrometer Hartmann's constants Determination of wavelength
- 16. Charge of an electron using spectrometer
- 17. Determination of Audio Frequency Bridge method
- 18. Velocity and Compressibility of a liquid Ultrasonic method
- 19. Characteristics of Solar cell
- 20. Thermionic Work Function
- 21. Determination of refractive index of a liquid by Air Wedge method
- 22. Determination of refractive index of a liquid by Newton's ring method
- 23. Fresnel's biprism Determination of the thickness of mica sheet.

Year	Subject Title	Sem	Sub Code
2018-19	PRACTICAL – II – GENERAL ELECTRONICS	II	18MPH26P
Onwards	Examination at the end of SECOND Semester		
	(Any 12)		

<u>Objective</u>: To learn the construction, trouble-shooting and interpreting the results of analog and digital experiments

- 1. Regulated and dual power supply construction
- 2. Hartley Oscillator (i) Using Transistor (ii) Using Op. Amp
- 3. Astable multivibrator using (i) IC 555 and (ii) Op. Amp
- 4. Differentiator and integrator using Op. Amp
- 5. RC coupled amplifier- Frequency response
- 6. Characteristics of FET
- 7. Common source FET amplifier
- 8. Characteristics of UJT
- 9. UJT relaxation oscillator
- 10. Op. Amp as Schmitt trigger
- 11. Clipping and clamping circuits
- 12. D/A converter using Op. Amp
- 13. Design of Low pass, High pass and Band pass filters
- 14. Parameters of Op. Amp
- 15. Differential Amplifier- Op. Amp
- 16. Frequency response of an Op. Amp
- 17. Sign changer, Scale changer, Adder and Subtractor using Op. Amp
- 18. AC amplifier- Inverting, Non-inverting, Voltage follower using Op. Amp
- 19. Bistable multivibrator using IC 555
- 20. Analog to Digital converter using IC 74148

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 7: Molecular Spectroscopy	III	18MPH31C

<u>Objective</u>: To explore the principle, instrumentation and application of various spectroscopic techniques

UNIT 1:

Microwave Spectroscopy: Classification of molecules – Interaction of radiation with rotating molecule – Rotational spectra of rigid diatomic molecule – Isotope effect – Intensity of rotational lines – Non-rigid rotator – Rotational spectra of linear polyatomic molecules and symmetric top molecules – Microwave spectrometer.

Infra-red Spectroscopy: The energy of a diatomic molecule – Simple harmonic oscillator – Anharmonic oscillator – Hot bands – Diatomic vibrating rotator – Vibration-Rotation spectra of linear molecules and symmetric top molecules – IR spectrophotometer – Fourier Transform IR spectroscopy (Basic Ideas)

UNIT 2:

Raman Spectroscopy: Principle – Classical Theory – Quantum Theory – Pure rotational Raman spectra of linear molecules – Vibrational coarse and rotational fine Raman spectra– Rule of mutual exclusion – Comparison between Raman and IR spectra – Raman Spectrometer.

Nonlinear Raman Phenomenon: Hyper Raman effect – Classical treatment – Experimental techniques – Stimulated Raman scattering – Inverse Raman effect – Coherent anti-stokes Raman scattering – Photo-acoustic Raman scattering.

UNIT 3:

Electronic Spectroscopy: The Born-Oppenheimer approximation – Vibrational course structure – Progressions and sequences – Frank Condon Principle – Rotational fine structure of electronic vibration spectra – Fortrat Diagram.

Photoelectron Spectroscopy: Principle – Instrumentation – Information from photoelectron spectra – Basic Ideas on ultraviolet photoelectron spectroscopy (UPES) and X-ray photoelectron spectroscopy (XPS)

UNIT 4:

NMR Spectroscopy: Quantum description of Nuclear Magnetic Resonance – Rules predicting spin number of nuclei responding to NMR – Chemical shift – Instrumentation – Spin-lattice and spin-spin relaxation – Bloch equations and complex susceptibility – Line width.

ESR Spectroscopy: Comparison between NMR and ESR – Theory – Lande's splitting factor (g) – Hyperfine splitting – Instrumentation.

UNIT 5:

Mossbauer Spectroscopy: Recoilless emission and absorption – Instrumentation – Isomer shift – Quadrupole interaction – Magnetic hyperfine interaction.

NQR Spectroscopy: Theory – The quadrupole nucleus – Principle of NQR – Instrumentation.

Atomic Absorption Spectroscopy: Principle – Grotrian diagram – Distinction between atomic absorption and flame emission spectroscopy – Advantages and disadvantages of AAS – Instrumentation.

Books for Study:

- 1. Molecular Structure and Spectroscopy by G.Aruldhas, Printice Hall of India (Units 1, 2, 3)
- 2. Spectroscopy (Atomic and Molecular) by Gurdeep Chatwal and Sham Anand, Himalaya Publishing House (Unit 4 and 5)
- 3. Solid State Physics by S.L. Gupta and V. Kumar, K. Nath & Co (Unit 4 and 5)

- 1. Spectroscopy Volume I, II and III by SP Straugan and S. Walker
- 2. Fundamentals of Molecular Spectroscopy by CN Banwell, Tata McGraw Hill Publishing Co. Ltd.

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 8: Nuclear Physics	III	18MPH32C

<u>Objective</u>: To understand the properties of nucleus and fundamental particles and to realize the impact of nuclear physics on socio-economic and environmental factors

UNIT 1:

Quantum Numbers: Quantum numbers for individual nucleons – Isospin – parity – Nuclear angular momentum – Nuclear magnetic dipole moment – Quadrupole moment.

Mass Spectroscopy: Bainbridge and Jordan mass spectrograph – Neir's double focussing mass spectrometer – Mass synchrometer.

UNIT 2:

 α -ray – Determination of q/m of α particle – Determination of the charge and mass of α particles – Range of α particles – Experimental measurement of the range of α particles – Range – Velocity – Energy – Life relations - α particle spectra – Gamow's theory of α decay

Beta ray – Determination of e/m of β particles: Kaufmann's experiment - β ray spectra – Magnetic spectrograph – Origin of the line and continuous spectrum – Neutrino hypothesis – Indirect method – Direct method – Fermi theory of β decay γ ray – Wavelength measurement by crystal diffraction – Origin of γ rays – Nuclear isomerism – Internal conversion – Internal pair creation.

UNIT 3:

Nuclear Forces: Nuclear forces – Properties – Charge independence – Spin dependence of nuclear forces – exchange forces – Meson theory of nuclear forces – Isotopic spin formalism.

Nuclear Models: Classification of nuclear models - Liquid drop model – Spontaneous fission – Activation energy – Shell model – Prediction of angular momenta of nuclear ground states by shell model – Collective model – Optical model.

UNIT 4:

Nuclear Reactions: Kinds of reaction and conservation laws – Energy of Nuclear reaction – Continuum theory of Nuclear reaction – Resonance – Breit and Wigner dispersion formula – Stages of a nuclear reaction.

Nuclear Reactors: Nuclear reactors – Pressurized Water Reactor – Boiling Water Reactor – Fast Breeder Reactor – Neutron cycle in a thermal nuclear reactor – Fusion reactors – Biological and other effects of nuclear radiations.

UNIT 5:

Elementary Particles: Classification – Particle interaction – conservation laws – Strangeness – Hyper charge – Isospin – Charge conjugation – Parity – Time reversal – CPT theorem – SU (3) Symmetry – Quarks – Quarks masses – Quantum numbers – Isospin of quarks – Quantum Chromodynamics.

Books for Study:

- 1. Nuclear Physics by DC Tayal (Units 1, 2, 3 & 4) Himalaya Publishing House.
- 2. Modern Physics IV Edition by Beiser (Unit 5) Mcgraw Hill.

- 1. Nuclear Physics by B. B. Srivastava, Rastogi Publications.
- 2. Nuclear Physics by Pandya and Yadav, Kedar Nath Ram Nath publishers.

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 9: Advanced Electronics	III	18MPH33C

<u>Objective</u>: To learn the functioning of analog and digital circuits and designing special devices using them. They also learn the architecture and programming 8085 microprocessor.

UNIT 1: Integrated Circuits: Fabrication and Characteristics

Integrated circuit technology – Basic monolithic circuits – Epitaxial growth – Masking and etching – Diffusion of impurities – Transistor for monolithic circuits – Monolithic diodes – Integrated resistors- Integrated capacitors – Monolithic circuit layout – Additional isolation methods – LSI and MSI – Metal- semiconductor contact.

UNIT 2: Integrated Circuits as Analog System Building Blocks

Linear analog systems: Basic Op Amp. applications – Sign changer – Scale changer – Phase shifter – Summing amplifier – Voltage to current converter – Current to voltage converter – DC voltage follower – Differential DC amplifier – Stable AC coupled amplifier – Analog integration and differentiation – Electronic analog computation

Nonlinear analog systems: Comparator – Sample and hold circuits – D/A converter: Binary weighted resister and ladder type – A/D converter: Simultaneous type, counter type, successive type and dual-slop converters

UNIT 3: Flip-flop, Minimization Techniques and Synchronous Counters

Flip-flops: S-R, Clocked S-R, D, J-K, T, Master-Slave J-K flip-flops – Their state diagrams and characteristic equations – Edge triggering in flip-flops

Boolean algebra and Minimization Techniques: Basic laws of Boolean algebra – De Morgan's theorems – Sum-of-products and Product –of-sums - Karnaugh map (up to four variables only) –Don't care conditions

Design of Synchronous Counters: Design of MOD-3, MOD-5, MOD-6 ,and MOD-10 counters using JK Master-slave flip-flops only – Register – 4 bit shift Register – Serial-in serial-out, Serial-in Parallel-out, Parallel-in Serial-out and Parallel-in Parallel-out – Ring counter – Design of four bit self-correcting ring counter using D-flip-flop

UNIT 4: Microprocessors

8085 microprocessors - Microprocessor communication and bus timings - Demultiplexing the bus AD₇ - AD₀ - Generating control signals - A detailed architecture of 8085 microprocessor - 8085 machine cycles and bus timings - Opcode fetch machine cycle - Memory read machine cycle - Memory interfacing: Memory structure and its requirements - Basic concepts in memory addresses interfacing - Address decoding - interfacing circuit - Address decoding and memory address interfacing the 8155 memory section

UNIT 5: Programming the 8085

8085 programming model – Instruction classifications – Instruction and data format – 8085 Instructions: Data transfer operations – Logic operations – Branch operations – Programming techniques – Looping, counting and indexing – Additional data transfer and 16-bit arithmetic instructions – Counters and time delays – Simple programs – Addition, subtraction, multiplication, division, setting bits, masking bits

Books for Study:

- 1. Integrated Electronics by Millman and Halkias, TMH Publications (UNIT 1&2)
- 2. Digital Circuits and Design by S. Salivahanan and S. Arivazhagan, Vikas Publishing(UNIT 3)
- 3. Microprocessor Organizations and Architecture by Ramesh S. Gaonkar(UNIT 4 & 5)

- 1. Handbook of Electronics by Gupta and Kumar
- 2. Introduction to Microprocessors by D.S.Matur

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Elective III- Problems in Advanced Physics – 3	III	18MPH34E

<u>Objective</u>: To develop problem solving skills in students and to motivate them to appear national level competitive examinations with confidence

UNIT 1: Atomic & Molecular Physics

Quantum states of an electron in an atom- Electron spin-Stern and Gerlach experiment -Spectrum of helium and alkali atom - Relativistic corrections for energy levels of hydrogen atom - Hyperfine structure and isotopic shift - Width of spectrum lines- L-S & J-J couplings -Zeeman, Paschen-Bach and Stark effects – X-ray spectroscopy - Electron spin resonance, NMR, chemical shift – Rotational, Vibration, Electronic and Raman spectra of diatomic molecules - Frank Condon principle and selection rules - Spontaneous and stimulated emission, Einstein A & B coefficients - Optical pumping - Population inversion - Rate equation - Modes of resonators and coherence length.

UNIT 2: Electronics

Semiconductor device physics including diodes, junctions, transistors, field effect devices, homo and hetero-junction devices, device structure, device characteristics, frequency dependence and applications - Opto-electronic devices including solar cells, photo-detectors, LEDs – High frequency devices including generators and detectors - Operational amplifiers and their applications- Digital techniques and applications (registers, counters, comparators and similar circuits) - A/D and D/A converters - Microprocessor and Microcontroller basics.

Books for Study:

CSIR-UGC NET/JRF/SET Physical Science by Dr. Surekha Tomar Upkar Prakahan, Agra (**NOTE: Problems only from Book for Study**)

Part A	25 Multiple Choice Questions(13 questions from Unit 1 &12 questions from Unit 2)	Unit 1: Pages:771 - 787 Unit 2: Pages: 570 – 586, 595 – 600	25×1=25
Part B	Unit 1 (Any 5 Questions out of 9)	Pages: 819 – 833, 844 – 848	5×5=25
Part C	Unit 2 (Any 5 Questions out of 9)	Pages: 637 – 649, 694 - 700	5×5=25
		Total	75

Question Paper Pattern:

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 10: Materials Science	IV	18MPH41C

<u>Objective</u>: To understand the characteristics of different types of materials and their applications

UNIT 1: Dielectric materials

Polarization – Dielectric constant – Different types of polarization – Total polarizability – Frequency and Temperature effects on polarization – Dielectric loss – Local field – Clausius-Mossotti relation- Dielectric breakdown – Different types of breakdown – Different types of dielectric materials – Active and Passive dielectrics – properties and applications of dielectric materials – Ferroelectric materials – Applications – Piezoelectric materials – Applications.

UNIT 2: Magnetic Materials

Types of magnetic materials – Paramagnetic materials – Langevin theory of paramagnetism – Weiss theory of paramagnetism – Quantum theory of paramagnetism – Ferromagnetic materials – Ferromagnetic domains – Origin of domains – Exchange integral - Weiss theory of ferromagnetism – Antiferromagnetism – Neel temperature – Molecular field theory of antiferromagnetism – Ferrimagnetic materials.

UNIT 3: Semiconducting materials and Modern materials

Types of semiconducting materials – Mobility, Drift velocity and carrier concentration of intrinsic semiconductor and extrinsic semiconductor – Hall Effect – Experimental determination of hall coefficient. Polymers – Plastics – Ceramics – High temperature materials – Thermoelectric materials – Nuclear engineering materials – Metallic glasses – Metal matrix composites – Biomaterials – Super strong materials.

UNIT 4: Superconducting materials and Optical materials

Superconductivity – Superconductors – Critical temperature and Critical magnetic field – Properties of superconducting materials – Meissner effect – Thermodynamics and Optical properties – Isotopic effect – Type I and Type II superconductors – London equation – Penetration depth – Cooper pair – BCS theory – coherence length – recent trends in high temperature superconductors – superconducting magnets – superconducting quantum interface devices (SQUID) – applications of superconducting materials. Optical materials – Materials for optical sources and detectors – Fibre optic materials and their applications.

UNIT 5: Nanomaterials

Introduction – synthesis of nanostructured materials – properties of nanomaterials – Electrical, Optical, Thermal, mechanical and magnetic properties – functional nanoscale devices – carbon nanotubes – properties of carbon nanotubes – structure of carbon nanotubes – fabrication of

carbon nanotubes – application of carbon nanotubes – quantum dot lasers – fabrication of quantum dot lasers – nanomagnets – Ferrofluids – applications of nanomaterials.

Books for Study:

- 1. Solid State Physics by Gupta , Kumar and Sharma(Unit 1,2 and 4)
- 2. Handbook of Electronics by Gupta and Kumar (Unit 3)
- 3. Material Science by M. Arumugam (Units 3 and 4)
- 4. Nanostructured Materials by ParagDivvan and AshishBharadwaj (Unit 5)

- 1. Solid State Physics by Dekkar
- 2. Introduction to Solid State Physics by Kittel
- 3. Nanotechnology by ShaliniSuri
- 4. Solid State Physics by Saxena and Gupta

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 11: Optical and Thin Film Physics	IV	18MPH42C

<u>Objective</u>: To understand the optical and thin film technology to enable students to take up research in these field

UNIT 1: Polarisation of light

Polarization – Partial polarization – Polarization by reflection – Polarization by refraction – Polarization by scattering – Circular and Elliptical polarization – Quarter wave plate – Matrix representation of polarization – The Jones calculus – Eigen vectors of Jones matrices – Dichroism –Polaroids. Half – Wave plate, Analysis of Polarized light, Babinet Compensator, Fresnel's Rhomb; Double Imaging Polarizing Prims; Applications of Polarized light; Electro – optic and magneto – Optic Effects.

UNIT 2: Laser Physics

Laser – Characteristics of laser – Basic concepts of laser – Einstein's coefficients – Various pumpingmethods – Metastable states – Population inversion in three level and four level systems – Activemedium – General laser system – Brewster's windows – Q –switching – Mode locking – Gain curve and laser operating frequencies – Neodymium laser – Carbon di oxide laser – Argon ion laser – Liquid laser – Dye laser – Semiconductor laser – Application of laser in various fields.

UNIT 3: Fibre optics

Basic principles – Total internal reflection – Fibre composition – Fibre dimensions – Fibre materials – Classification of optical fibres based on materials, modes and refractive index profiles – Acceptancecone – Numerical aperture – Transmission losses in optical fibre system components – LED, Laser, Photodiode and Avalanche Photodiode – Light wave communication using optical fibres – Applications in medical field.

UNIT 4: Thin film preparation

Thin film depositions technology – Electrodeposition, Spray etc -Thermal evaporation – Evaporation methods – Resistive heating – Electron bombardment heating – Cathodic sputtering – Sputtering process – Glow discharge sputtering – Chemical vapour deposition – Vacuum deposition apparatus – Substrate deposition technology.

UNIT 5: Thickness Measurements and Surface Characterization

Film thickness and its control – Mass method: Gravimetric method and micro balance techniques – Crystal Oscillator – Quartz crystal thickness monitor with block diagram – Optical method: Interferometry – Fizeau fringes method – FECO fringes Method – Electron microscope – Types of electron microscope – Scanning electron microscope (SEM) – Transmission electron microscope (TEM) – Applications of SEM and TEM.

Books for Study:

1. Introduction to Modern Optics by G.R.Fowles (Unit 1)

- 2. Introduction to Laser Physics by Langyerl (Unit 2)
- 3. Handbook of Thin Film Technology by Leon I Meisael and ReinherdGleng (Unit 4)
- 4. Thin Film Fundamentals by Goswami (Unit 3 and 5)

- 1. Thin Film Phenomena by KL Chopra
- 2. Physics for Engineers by MR Srinivasan

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	Core 12: Numerical Methods and Object Oriented Programming with C ++	IV	18MPH43C

<u>**Objective:**</u> To learn numerical methods of computing certain mathematical quantities and to enable students to write C++ programming to solve problems in numerical methods.

UNIT 1:

Curve fitting by the method of least squares: Principle – Fitting a straight line (y = ax + b), Parabola ($y = ax^2 + bx + c$), Exponential curve ($y = ae^{bx}$) and a curve of the form $y = ax^b$ – Calculation of the sum of the squares of residuals (for straight line fit and parabola fit) – Fundamental theorems of algebra (without problems)

Solution of algebraic transcendental equations: bisection method, iteration method, condition for convergence – Order of convergence – Newton-Raphson method – Geometrical meaning – Criterion for convergence – Order of convergence

Solution of simultaneous linear algebraic equations: Gauss elimination method – Method of triangularization

UNIT 2:

Interpolation for equal intervals: Introduction – Gregory – Newton forward and backward interpolation formulae – Errors in the formulae – Interpolation for unequal intervals: Divided differences – Properties – Newton's interpolation formula – Lagrange's interpolation formula

Numerical integration: Newton-Cote's formula – Trapezoidal rule – Simpson's one-third rule

Numerical solution for ordinary differential equations: Point wise method: Taylor's series (First and second order ODE)- Step by step method: Euler's algorithm – Improved and modified Euler's methods – Runge – Kutta method of second and fourth orders (for first order ODE)

UNIT 3:

Procedure oriented programming – OOP Paradigm – Basic concepts of OOPs – Objects – Classes – Data abstraction and encapsulation – Inheritance – Polymorphism – Dynamic binding – Message passing – Structure of C ++ program -Tokens – Key words – Identifiers and constants – Basic data types – User defined data types – Derived data types – Symbolic constants – Type compatibility – Declaration of variables – Dynamic initialization of variables – Reference variables

UNIT 4:

Operators in C ++: Scope resolution operators – Member dereferencing operators – Memory management operators – Manipulators – Type cast operators – Expressions and their types – Special assignment expressions – Implicit conversions – Operator over loading – Operator precedence – Control structures

UNIT 5:

Functions in C ++: The main function – Function prototyping – Call by reference – Return by reference – In line functions – Default arguments – Constant arguments – Function overloading – Friend and virtual functions – Math library functions

Books for Study:

- 1. Numerical methods in Science and Engineering by P. Kandasamy, K. Thilagavathy& K. Gunavathy, S. Chand & Co., Ltd.
- 2. Object Oriented Programming with C ++ by E. Balagurusamy, TMH, 2^{nd} Edition

- 1. Numerical Methods in Science & Engineering by M.K. Venkatraman, The National Publishing Company, 5th Ed., 2004
- 2. The C ++ Programming Language, Bjarne Stroutstrup, Benjamin and Cummins Publications, 2nd Edition

Year	Subject Title	Sem	Sub Code
2018-19	Elective-IV: Soft Skill	IV	18MPH44P
Onwards	(Practical and Viva-Voce Examination Only)		

<u>Objective</u>: Students enhance their verbal, written and oral communication skills. They are empowered to meet any challenges and situations and come out with flying colours.

UNIT 1:

Introductory activities: Listening Skills-Definition – Types – Tips for effective listening – Academic listening – Listening to talks and presentations – Listening to announcements – Listening to radio and television- Effective listening and English – Activities

Writing Skills: Standard business letter –Report writing-Email drafting and Etiquette – Preparing agenda and writing minutes for meetings – Making notes on business conversations-Effective use of SMS – Case studies and documentation

UNIT 2:

7QC Tools – Flow diagram – types of flow diagram – Applications – Brain storming – Key elements – Methods – Uses – Data Collection – Purpose – Types of Data – Check Sheet – Interpretation – Errors in interpretation – Benefits of Data Collection – Graphs – Purpose – Types – Benefits

UNIT 3:

Stratifications – Steps for stratification – Source and Bases – Pareto Diagram – Principles for selection – Uses of Pareto Analysis – Pit falls – Cause and Effect Diagram – Making of cause and effect Diagram – Types of cause and effect diagram – Scatter Diagram – Making of Scatter Diagram – Pit falls – Need for a good scatter diagram – Histogram – Construction of Histogram – Interpretation and Shapes of Histogram- Uses of Histogram – control Chart – Types – Making of control charts – Interpretation

UNIT 4:

Quantitative aptitude – Problems on numbers – Ages – Time and Work –Calendar – Odd-manout and series –Verbal Reasoning: Series completion analogy – Puzzle Test – Logical Sequence of words – Non-verbal reasoning: Figure formation and analysis.

UNIT 5:

Basics of Computers – Email – MS Word - MS Excel – Power point presentation – other softwares useful for science.

Books for Study:

- 1. Communication Skills A Multi-skill Course, Course Team, Bharathiar University, Macmillan Publisher India Limited, Delhi, Reprint2011(Unit 1)
- 2. Problem Solving Techniques by K.Ganapathy, V.Narayana and B.Subramaniam, Quality circle forum of India, Revised Edition 2003 (Unit 2 & 3)
- 3. Verbal Reasoning by R.S.Aggawal, S.Chand & Co., New Delhi (Unit 4)

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	PRACTICAL – III: ADVANCED EXPERIMENTS Examination at the end of FOURTH Semester (Any 12)	IV	18MPH45P

<u>Objective</u>: To train the students to apply the basic principles of physics to determine physical constants and characteristics of devices.

- 1. Brass Arc Spectrum Constant Deviation spectrometer
- 2. Iron Arc Spectrum Constant Deviation spectrometer
- 3. Copper Arc Spectrum Constant Deviation spectrometer
- 4. Absorption Spectra using Constant Deviation spectrometer
- 5. Susceptibility by Quincke's method
- 6. Susceptibility by Guoy method
- 7. e/m by Magnetron method
- 8. e/m by Zeeman Effect
- 9. Study of PN junction Determination of reverse saturation current and material constant
- 10. Study of PN junction Determination of temperature co-efficient of junction voltage and Band gap energy
- 11. Study of PN junction Study of depletion capacitance and its variation with reverse bias
- 12. Characteristic study of photo detectors using laser
- 13. Determination of Planck's constant
- 14. Study of Hall Effect in a semiconductor
- 15. Michelson's Interferometer λ and $d\lambda$ and thickness of mica sheet
- 16. Determination of wavelengths of Hg spectrum using double slit- Hartmann's formula
- 17. Kelvin's double bridge Determination of very low resistance
- 18. Hysteresis curve Magnetometer method
- 19. Determination of Band gap energy of a semiconductor Four probe method
- 20. Characteristics GM Counter

21. Determination of wavelength of a laser source using diffraction grating and thickness of a wire

- 22. Rydberg constant using hydrogen discharge tube and grating
- 23. MATLAB Programming Radioactive decay graph
- 24. MATLAB Programming Single and double integration

Year	Subject Title	Sem	Sub Code
2018-19 Onwards	PRACTICAL–IV: Microprocessor and Special Electronics (Examination at the end of FOURTH Semester (Any 12)	IV	18MPH46P

<u>**Objective:**</u> To develop skills in programming and interfacing microprocessor and C++, to design and study analog and digital circuits

- 1. 8085 ALP for addition, subtraction, multiplication and division
- 2. 8085 ALP for subtraction using 1's and 2's complement methods
- 3. 8085 ALP for finding the largest/smallest number in an array and sum of a finite series
- 4. 8085 ALP for sorting the array in ascending and descending order
- 5. 8085 ALP for BCD to binary and binary to BCD
- 6. Waveform generation using 8085
- 7. LED interfacing using 8085
- 8. Traffic light controller using 8085
- 9. Stepper motor controller using 8085
- 10. Digital clock using 8085
- 11. Design and study of Wien Bridge Oscillator using Op. Amp
- 12. Design and study of Phase shift Oscillator using Op. Amp
- 13. Solution of diferential equation using Op. Amp
- 14. Solution of simultaneous equations using Op. Amp
- 15. Op-amp as logarithmic and antilogarithmic amplifier
- 16. Design of MOD 3 and MOD 5 counters using JK flip-flop
- 17. Design of MOD 10 counter using JK flip-flop
- 18. Binary adder and subtractor using 7483 and 7486
- 19. Design of self-correcting ring counter
- 20. Three bit binary Up/Down counter using IC 7473
- 21. C++ Program to fit a straight line y=ax+b using method of least squares
- 22. C++ Program to solve nonlinear equations using Newton- Raphson method
- 23. C++ Program to solve system of linear equations using Newton- Raphson method
- 24. C++ Program to evaluate the intergral using (1) Trapezoidal rule (2) Simpson's 1/3rd rule
- 25. C++ Program to solve the first order differential equation using Runge-Kutta method