GOVERNMENT ARTS COLLEGE (AUTONOMOUS), COIMBATORE-641 018 POST GRADUATE AND RESEARCH DEPARTMENT OF MATHEMATICS M. Sc., MATHEMATICS SCHEME OF EXAMINATION (2015 - 2016 ONWARDS)									
Sem	Subject			Marks					
				先	U		$\begin{gathered} \underset{\sim}{\xi} \\ \underset{\sim}{4} \end{gathered}$	\sum_{i}	
I	Core-I: Modern Algebra	6	3	75	25	100	38	50	5
	Core- II: Real Analysis	6	3	75	25	100	38	50	5
	Core - III: Complex Analysis	6	3	75	25	100	38	50	5
	Core- IV: Differential Equations	6	3	75	25	100	38	50	5
	Elective- I: Advanced Numerical Analysis	4	3	75	25	100	38	50	2
	Seminar	2							
	TOTAL	30							22
II	Core-V: Topology	6	3	75	25	100	38	50	5
	Core- VI: Measure and Integration	6	3	75	25	100	38	50	5
	Core - VII: Operations Research	6	3	75	25	100	38	50	5
	Core- VIII: Object Oriented Programming With C++	6	3	75	25	100	38	50	5
	Elective- II: Number Theory	4	3	75	25	100	38	50	3
	Seminar	2							
	TOTAL	30							23
III	Core-IX: Mechanics	6	3	75	25	100	38	50	5
	Core- X: Graph Theory	6	3	75	25	100	38	50	5
	Core - XI: Functional Analysis	6	3	75	25	100	38	50	5
	Core- XII: Mathematical Statistics	6	3	75	25	100	38	50	5
	Elective- III: Introduction to Cryptography	4	3	75	25	100	38	50	2
	Seminar	2							
	TOTAL	30							22
IV	Core-XIII: Operator Theory	6	3	75	25	100	38	50	5
	Core- XIV: Fluid Dynamics	6	3	75	25	100	38	50	5
	Core - XV: Fuzzy Logic and Fuzzy Sets	6	3	75	25	100	38	50	5
	Core- XVI: Solid Mechanics	6	3	75	25	100	38	50	5
	Elective- IV: Matlab	4	3	75	25	100	38	50	3
	Seminar	2							
	TOTAL	30							23
	GRANT TOTAL	120							90

Sem: SEMESTER
Exam (Hrs): EXAMINATION (HOURS)

SE: SEMESTER EXAMINATION
CA: CONTINUOUS ASSESSMENT

SE-Min: SEMESTER EXAMINATION MINIMUM
TPM: TOTAL PASSING MINIMUM

MODERN ALGEBRA

UNIT I

Group Theory: Another counting principle - Sylow's theorems
(Chapter 2 - Sections: 2.11 and 2.12)

UNIT II

Ring Theory: Polynomial rings - Polynomial rings over the rational field Polynomial rings over commutative rings.
(Chapter 3 - Sections: 3.9 to 3.11)

UNIT III

Fields: Extension fields - Roots of polynomials - More about roots
(Chapter 5 - Sections: 5.1, 5.3 and 5.5)

UNIT IV
Fields, Finite Fields: The Elements of Galois Theory - Finite fields
(Chapter 5 - Section: 5.6, Chapter 7 - Section: 7.1)

UNIT V

Modules: Free modules - Projective modules - Tensor products - Flat modules.
(Chapter 1 - Sections: 1.1 to 1.4)

TEXT BOOKS:

1. Topics in Algebra - I.N. Herstein, Second Edition, Vikas Publishing Company, New Delhi, Second Reprint, 2006. (For Units I to IV)
2. Commutative Algebra - N.S. Gopalakrishnan, Oxonian Press, New Delhi. (For Unit V)

REFERENCE BOOKS:

1. A First Course in Abstract Algebra - John B.Fraleigh, Narosa Publishing House, New Delhi.
2. Modern Algebra - Surjeet Singh and Qazi Zameeruddin, Vikas Publishing Company, New Delhi.
3. Basic Abstract Algebra - P.B.Bhattacharya, S.K.Jain and S.R.NAIPAUL, Cambridge University Press, New York.

I SEMESTER

CORE PAPER II

Subject Code: 12 C

REAL ANALYSIS

UNIT I

The Riemann-Stieltjes Integral: The definition of Riemann-Stieltjes integral - Step function as integrators - Reduction of a Riemann-Stieltjes integral to a finite sum Euler's summation formula - Monotonically increasing integrators. Upper and lower integrals - Additive and linearity properties of upper and lower integrals Riemann's condition - Comparison theorems - Integrators of bounded variation Sufficient conditions for existence of Riemann-Stieltjes integrals - Necessary conditions for existence of Riemann-Stieltjes integrals - Mean value theorems for Riemann-Stieltjes integrals.
(Chapter VII - Sections: 7.3, 7.8-7.18)

UNIT II

Infinite Series and Infinite Products: Convergent and divergent sequences of complex numbers - Limit superior and limit inferior of real-valued sequences Monotonic sequences of real numbers - Infinite series - Inserting and removing parenthesis - Alternating series - Absolute and conditional convergence - Test for convergence of series with positive terms - The geometric series - The integral test The big oh and little oh notation - The ratio test and the root test - Dirichlet's test and Abel's test - Rearrangement of series - Riemann's theorem on conditionally convergent series.
(Chapter VIII - Sections: 8.2-8.8, 8.10-8.15, 8.17-8.18)

UNIT III

Infinite Series and Infinite Products (Continued): Subseries - Double sequencesDouble series - Rearrangement theorem for double series - A sufficient condition for equality of iterated series - Infinite products.
Sequences of Functions: Pointwise convergence of sequences of functions Examples of sequences of real-valued functions - Definition of uniform convergence
and continuity - The Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions.
(Chapter VIII - Sections: 8.19-8.23, 8.26 and Chapter IX - Sections: 9.1-9.6)

UNIT IV

Sequences of Functions (Continued): Uniform convergence and Riemann-Stieltjes integration - Non-uniformly convergent sequences that can be integrated term by term - Uniform convergence and differentiation - Sufficient conditions for uniform convergence of a series.
Multivariable Differential Calculus: The directional derivative - Directional derivatives and continuity - The total derivative - The total derivative expressed in terms of partial derivatives - The matrix of a linear function - The Jacobian matrix The chain rule.
(Chapter IX - Sections: 9.8 - 9.11 and Chapter XII - Sections: 12.2 - 12.5, 12.7 12.9)

UNIT V

Multivariable Differential Calculus (continued): The Mean-value theorem for differentiable functions - A sufficient condition for differentiability - A sufficient condition for equality of mixed partial derivatives - Taylor's formula for functions from R^{n} to R^{1}

Implicit Functions and Extremum Problems: Functions with nonzero Jacobian determinant - The inverse function theorem - The implicit function theorem.
(Chapter XII - Sections: 12.11-12.14 and Chapter XIII - Sections: 13.2-13.4)

TEXT BOOK:

Mathematical Analysis - T.M.Apostol, Second Edition, Addison Wesley Publishing Company, 2002.

REFERENCE BOOK:

Real and Complex Analysis - Walter Rudin, Tata McGraw Hill Publishing Company Limited.

COMPLEX ANALYSIS

UNIT I

The general form of Cauchy's Theorem: Chains and cycles - Simple connectivity

- Homology - The general statement of Cauchy's theorem - Proof of Cauchy's theorem

The Calculus of Residues: The residue theorem - The argument principle Evaluation of definite integrals.
(Chapter 4 - Sections: 4.1 to $4.5,5.1$ to 5.3)

UNIT II

Harmonic functions: Definition and basic properties - The mean value property Poisson's formula
Power series expansions: Weierstrass's theorem - The Taylor series - Laurent series.
(Chapter 4 - Sections: 6.1 to 6.3 and Chapter 5 - Sections: 1.1 to 1.3)

UNIT III

Partial Fractions and Factorization: Partial fractions - Infinite products Canonical products - The Gamma function.
Entire Functions: Jensen's formula
(Chapter 5 - Sections: 2.1 to 2.4 and 3.1)

UNIT IV

The Riemann Zeta Function: The product development - Extension of $\xi(\mathrm{s})$ to the whole plane - The functional equation - The zeros of the zeta function.
Normal Families: Equicontinuity - Normality and compactness - Arzela's theorem (Chapter 5 - Sections: 4.1 to $4.3,5.1$ to 5.3)

UNIT V
Simply periodic functions: Representation by exponentials - The Fourier development - Functions of finite order.

Doubly periodic functions: The periodic module - Unimodular transformations The canonical basis - General properties of elliptic functions.
(Chapter 7 - Sections: 1.1 to 1.3, 2.1 to 2.4)

TEXT BOOK:

Complex Analysis - Lars.V.Ahlfors, Third Edition, McGraw Hill International Edition, Fifth Reprint, 1983.

REFERENCE BOOK:

The Elements of Complex Analysis - B.Choudhary, Wiley Eastern Limited.

CORE PAPER IV

Subject Code: 14 C

DIFFERENTIAL EQUATIONS

UNIT I

System of Linear Differential Equations: Introduction - Systems of first order equations - Existence and Uniqueness theorem - Fundamental matrix.
(Chapter 4 - Sections: 4.1, 4.2, 4.4 and 4.5)

UNIT II

Non-homogeneous linear systems - Linear systems with constant coefficients and linear systems with periodic coefficients.
(Chapter 4 - Sections: 4.6, 4.7 and 4.8)

UNIT III

Elliptic Differential Equations: Occurrence of the Laplace and Poisson equations Boundary value problems - Some important mathematical tools - Properties of harmonic functions - Separation of variables - Dirichlet problem for a rectangle The Neumann problem for a rectangle - Interior Dirichlet problem for a circle Exterior problem for a circle - Interior Neumann problem for a circle - Solution of Laplace equation in cylindrical co-ordinates - Solution of Laplace equation in spherical coordinates.
(Chapter 2 - Sections: 2.1 to 2.12)

UNIT IV

Parabolic Differential Equations: Occurrence of the diffusion equations Boundary conditions - Elementary solution of the diffusion equation - Dirac delta function - Separation of variables method - Solution of a diffusion equation in cylindrical co-ordinates - Solution of a diffusion equation in spherical co-ordinates Maximum and minimum principles and consequences.
(Chapter 3 - Sections: 3.1 to 3.8)

UNIT V

Hyperbolic Differential Equations: Occurrence of the wave equation - Derivation of the one dimensional wave equation - Solution of the one dimensional wave equation by canonical reduction - The initial value problem - D'Alemberts solution - Vibrating string - Forced vibrations - Boundary and initial value problems for two dimensional wave equation - Periodic solution of one dimensional wave equation in cylindrical co-ordinates - Periodic solution of one dimensional wave equation in spherical co-ordinates - Vibration of a circular membrane - Uniqueness of the solution for the wave equation - Duhamel's principle.
(Chapter 4 - Sections: 4.1 to 4.12)

TEXT BOOKS:

1. Ordinary Differential Equations - S.G.Deo, V.Lakshmi Kantham And V.Raghavendra, Tata McGraw Hill Publishing Company Limited, New Delhi, Second Edition, Eighth Reprint, 2005. (For Units I and II)
2. Introduction To Partial Differential Equations - K.Sankara Rao, Prentice Hall of India Private Limited, New Delhi, Second Edition, 2008. (For Units III, IV and V).

REFERENCE BOOKS:

1. Differential Equations With Applications And Historical Notes - George F Simmons, Tata McGraw Hill Publishing Company Limited, New Delhi.
2. Elements Of Partial Differential Equations - Ian Sneddon, McGraw Hill International Company.

ELECTIVE PAPER I

Subject Code: 15 E

ADVANCED NUMERICAL ANALYSIS

UNIT I

Solving Non-linear Equations: Newton's method for complex roots- Muller's method- Bairsow's method for quadratic factors- Other methods for polynomialsMultiple roots.
Solving Sets of Equations: The relaxation method- System of nonlinear equations.
(Chapter 1; Sections: 1.4, 1.5, 1.8 to 1.10; Chapter 2; Sections: 2.11 and 2.12)

UNIT II

Interpolation and Curve fitting: Interpolation with a cubic spline - Bezier curves and B - spline curves- Polynomial approximation of surfaces- Least square approximation.
Approximation of Functions: Chebyshev polynomials- Economized power seriesApproximation with rational functions.
(Chapter 3; Sections: 3.4 to 3.7; Chapter 4; Sections: 4.1 to 4.7)

UNIT III

Numerical Differentiation and Integration: Extrapolation techniques- Gaussian quadrature- Adaptive integration- Multiple integrals- Multiple integration with variable limits- Application of cubic spline- An application of numerical integrationFourier transforms.
(Chapter 5 - Sections: 5.4, 5.9 to 5.14)
UNIT IV
Numerical Solution of Ordinary Differential Equations: Multistep methods-Adams- Moulton method- System of equations and higher order equations.
Boundary Value Problems: The shooting method- Solution through a set of equations- Derivative boundary conditions- Characteristic value problems.
(Chapter 6; Sections: 6.5, 6.7, 6.9; Chapter 7: 7.2 to 7.5)

UNIT V

Parabolic and Hyperbolic Partial Differential Equations: Types of partial differential equations- The heat equation and the wave equation- Solutions techniques for heat equation in one dimension.

The Finite Element Method: The Rayleigh-Ritz method- The collocation and Galerkin methods- Finite elements for ordinary differential equations.
(Chapter 8: Sections: 8.1 to 8.3; Chapter 9: Sections: 9.1 to 9.3)

TEXT BOOK:

Applied Numerical Analysis - Curtis F.Gerald And Patrick O.Wheatley, Sixth Edition, Pearson Education Publishers, 2003.

REFERENCE BOOK:

Numerical Methods For Engineers And Scientists - J.N.Sharma, Second Edition, Narosa Publishers, 2007.

II SEMESTER

CORE PAPER V

Subject Code: 21 C

TOPOLOGY

UNIT I

Topological Spaces: Topological spaces - Basis for a Topology - The order topology - The product topology on $X \times Y$ - The subspace topology - Closed sets and limit points.
(Chapter 2 - Sections: 12 to 17)

UNIT II

Continuous Functions: Continuous functions - The product topology - The metric topology and its continuation.
(Chapter 2 - Sections: 18 to 21)

UNIT III

Connectedness and Compactness: Connected spaces - Connected subspace of the real line - Compact spaces - Compact subspace of real line and limit point compactness.
(Chapter 3 - Sections: 23, 24, 26 to 28)
UNIT IV
Countability and Separation Axioms: The countability axioms - The separation axioms - Normal spaces -The Urysohn lemma - The Urysohn metrization theorem.
(Chapter 4 - Sections: 30 to 34)

UNIT V

The Tychonoff theorem, Complete Metric Spaces and Function Spaces: The Tychonoff theorem - The Stone-Cech compactification - Complete metric spaces Compactness in metric spaces - Pointwise and compact convergence - Ascoli's theorem.
(Chapter 5 - Sections: 37, 38 and Chapter 7 - Sections: 43, 45-47)

TEXT BOOK:

Topology - James R. Munkres, Second Edition, Prentice Hall of India Private Limited, New Delhi, 2009.

REFERENCE BOOK:

Introduction To Topology And Modern Analysis - G.F.Simmons,
McGraw Hill International Edition, Second Reprint, 2004.

MEASURE AND INTEGRATION

UNIT I

Lebesgue Measure: Introduction - Outer Measure - Measurable sets and Lebesgue measure - Measurable functions - Littlewood's three principles.
(Chapter 3 - Sections: 1, 2, 3, 5, 6)

UNIT II

The Lebesgue Integral: The Lebesgue integral of a bounded function over a set of finite measure - The integral of a non-negative function - The general Lebesgue integral - Convergence in measure.
(Chapter 4 - Sections: 2, 3, 4, 5)

UNIT III

Differentiation and Integration: Differentiation of monotonic functions Functions of bounded variation - Differentiation of an integral - Absolute continuity. (Chapter 5 - Sections: 1, 2, 3, 4)
UNIT IV
Differentiation and Integration: Convex Functions
The Classical Banach Spaces: The L^{p} spaces - The Minkowski and Holder inequalities.
(Chapter 5 - Section: 5 and Chapter 6 - Sections: 1, 2)

UNIT V

The classical Banach Spaces: Convergence and completeness - Approximation in L^{p} - Bounded linear functionals on the L^{p} spaces.
(Chapter 6 - Sections: 3 to 5)

TEXT BOOK:

Real Analysis - H.L.Royden, Third Edition, Prentice Hall of India Private Limited, New Delhi, 2009.

REFERENCE BOOK:

Mathematical Analysis - T.M.Apostol, Third Edition, Addison Wesley/Narosa Indian Student Edition, 2002.

II SEMESTER

CORE PAPER VII
Subject Code: 23 C

OPERATIONS RESEARCH

UNIT I

Dual Simplex Method

Revised Simplex Method: Product form of the inverse - Steps of the primal revised method.

Algebraic Sensitivity Analysis: Changes affecting feasibility - Changes affecting optimality.
Parametric Linear Programming: Parametric changes in c - Parametric changes in b.
(Chapter 4: 4.4 Section - 4.4.1; Chapter 7: 7.2 Sections-7.2.1, 7.2.2; Chapter 3: 3.6
Sections - 3.6.2, 3.6.3 and Chapter 7: 7.5 Sections - 7.5.1, 7.5.2)

UNIT II

Simulation: Monte-Carlo simulation - Types of simulation - Elements of discrete event simulation - Generation of random numbers - Mechanics of discrete simulation : Manual simulation of single server model.
(Chapter 16: Sections - 16.1 to 16.4 and 16.5.1)
Decision Analysis: Decision making under certainty - Analytic hierarchy process.
Decision making under risk - Decision tree based expected value criterion, Variations of the expected value criterion, Decision under uncertainty.
(Chapter 13: Sections - 13.1, 13.2, 13.3)

UNIT III

Game Theory: Optimal solution of two person zero sum game - Solution of mixed strategy games.

Dynamic Programming: Recursive nature of computations in DP - Forward and backward recursion.
(Chapter 13: Sections - 13.4 Chapter 10: Sections - 10.1 to 10.2)

UNIT IV

Non Linear Programming : Introduction - Formulating a nonlinear programming problem(NLPP) - General nonlinear programming problem - Constrained optimization with equality constraints - Constrained optimization with inequality constraints.
(Chapter 25: Sections - 27.1 to 27.5)

UNIT V

Non Linear Programming (continued): Introduction - Graphical solution - Kuhn Tucker conditions with non negative constraints - Quadratic programming Wolfe's modified simplex method - Beale's method - Separable convex programming - Separable convex programming algorithm.
(Chapter 28: Sections - 28.1 to 28.8)

TEXT BOOK:

1. Operations Research-An Introduction - Hamdy A. Taha, Eighth Edition, Prentice Hall of India Private Limited, New Delhi. (For units I, II and III)

2. Operations Research - Kanti Swarup, P.K. Gupta And
Manmohan, Sultan Chand _and Sons, Educational Publishers, New Delhi, Fourteenth Revised Edition. (For units IV and V)

II SEMESTER

CORE PAPER VIII

Subject Code: 24 C

OBJECT ORIENTED PROGRAMMING WITH C++

UNIT I

Beginning with $\mathrm{C}++$.
Tokens, Expressions and Control structures.
(Chapter 2 and Chapter 3)

UNIT II

Functions in C++.
Constructors and Destructors.
(Chapter 4 and Chapter 6)

UNIT III

Classes and Objects.
(Chapter 5)

UNIT IV

Operators overloading and Type conversions.
Pointers, Virtual functions and polymorphism.
(Chapter 7 and Chapter 9)

UNIT V

Inheritance: Extending Classes.
(Chapter 8)

TEXT BOOK:

Object Oriented Programming With C++ - E.Balagurusamy, Third
Edition, Tata McGraw Hill Publishing Company, New Delhi, 2008.

REFERENCE BOOKS:

1. Object Oriented Programming In Turbo C++- Robert Lafore, Wate group, 1992.
2. The C++ Programming Language - Bjarne Stroustroup, Addision Wesley, 1991.
3. Teach Yourself C++ - Herbert Schildt Ospore, McGraw Hill, 1994.

II SEMESTER

ELECTIVE PAPER II
Subject Code: 25 E

NUMBER THEORY

UNIT I

Introduction - Divisibility - Primes.
(Chapter I - Sections: 1.1 to 1.3)

UNIT II

Congruences - Solutions of congruences - The Chinese Remainder theorem - Prime power modulus- Prime modulus.
(Chapter II - Sections: 2.1 - 2.3, 2.6, 2.7)

UNIT III

Congruences of degree 2 - Prime modulus - Power residues - Number theory from an algebraic view point - Multiplicative groups - Rings and fields.
(Chapter II - Sections: 2.8-2.11)

UNIT IV
Quadratic residues - Quadratic reciprocity - The Jacobi symbol.
(Chapter III - Sections: 3.1, 3.2and 3.3)

UNIT V

Greatest integer function - Arithmetic functions - The Mobius inversion formula.
(Chapter IV - Sections: 4.1 to 4.5)

TEXT BOOK:

An Introduction to Theory of Numbers - Ivan NivEn and Herbert.
S Zucherman, HUGH. L MONTGOMERY, Fifth Edition, Wiley Eastern Limited, New Delhi, 1972.

REFERENCE BOOKS:

1. Introduction to Analytic Number Theory - T.M.Apostol, Springer Verlag, 1976.
2. Elementary Number Theory and its Applications - Kennath and Rosan, Addison Wesley Pulishing Company, 1968.
3. Number Theory - George E.Andrews, Hindustan Publishing, New Delhi, 1989.

III SEMESTER

CORE PAPER IX
Subject Code: 31 C

MECHANICS

UNIT I

Introductory Concepts: The mechanical system - Generalized co-ordinates Constraints - Virtual work - Energy and momentum.
(Chapter 1 - Sections: 1.1 to 1.5)

UNIT II

Lagrange's Equations: Derivation of Lagrange's equations - Examples - Integrals of the motion - Small oscillations.
(Chapter 2 - Sections: 2 . 1 to 2 .4)

UNIT III

Hamilton's Equation: Hamilton's principle - Hamilton's equations - Phase space.
(Chapter 4 - Sections: 4.1, 4.2 and 4.4)

UNIT IV

Hamilton-Jacobi Theory: Hamilton's principle function - The Hamilton-Jacobi equation - Separability.
(Chapter 5 - Sections: 5.1 to 5.3)

UNIT V

Introduction to Relativity: Introduction - Relativistic kinematics - Relativistic dynamics.
(Chapter 7 - Sections: 7.1 to 7.3)

TEXT BOOK:

Classical dynamics - Donald T. Greenwood, Prentice Hall of India Private Limited, New Delhi, 1985.

REFERENCE BOOKS:

1. Classical Mechanics - Herbert Goldstein, Narosa Publishing House, Second Edition, 1990.
2. Theoretical mechanics - Murray R. Spiegel, Tata McGraw Hill Education Private Limited, New Delhi, 2006.

III SEMESTER

CORE PAPER X

Subject Code: 32 C

GRAPH THEORY

UNIT I

Fundamental Concepts:

What is a graph- Paths, cycles and trails- Vertex degrees and counting (Chapter 1: Sections: 1.1 to 1.3)

UNIT II

Trees and Distance: Basic properties - Spanning trees and enumeration
(Chapter 2: Sections: 2.1, 2.2)

UNIT III

Matchings and Factors: Matchings and covers- Matchings in general graphs
Connectivity and Paths: Cuts and connectivity - K - connected graphs.
(Chapter 3: Sections: 3.1, 3.3; Chapter 4: Sections: 4.1, 4.2)

UNIT IV
Coloring of Graphs: Vertex colorings and upper bounds-Structure of K-Chromatic graphs.
(Chapter 5: Sections: 5.1, 5.2)

UNIT V

Edges and Cycles: Line graphs and edge coloring- Hamiltonian cycles.
Planar Graphs: Embedding and Euler's formula.
(Chapter 6: Section: 6.1; Chapter 7; Sections: 7.1, 7.2)
All starred items, optional sections and applications are omitted

TEXT BOOK:

Introduction To Graph Theory - Douglas B. West, Second Edition, PHI Learning Private Limited, New Delhi, 2009.

REFERENCE BOOKS:

1. Graph Theory, Narsingh Deo, Prentice Hall of India Private Limited, New Delhi, 1987
2. GRAPH THEORY, FRANK HARARY, Narosa Publishing House, New Delhi.

III SEMESTER

CORE PAPER XI
Subject Code: 33 C

FUNCTIONAL ANALYSIS

UNIT I

Banach Spaces: The definition and some examples - Continuous linear transformations - The Hahn Banach theorem.
(Chapter 9 - Sections: 46, 47, 48)

UNIT II

The natural imbedding of N in $\mathrm{N}^{* *}$ - The open mapping theorem - The conjugate of an operator.
(Chapter 9 - Sections: 49 to 51)

UNIT III

Hilbert Spaces: The definition and some simple properties - Orthogonal complements - Orthonormal sets - The conjugate space H^{*}.
(Chapter 10 - Sections: 52 to 55)

UNIT IV

The adjoint of an operator - Self adjoint operators - Normal unitary operators Projections.
(Chapter 10 - Sections: 56 to 59)

UNIT V

Finite Dimensional Spectral Theory: Matrices - Determinants and the spectrum of an operator - The spectral theorem.
(Chapter 11: Sections: 60 to 62)

TEXT BOOK:

Introduction to Topology and Modern Analysis - G.F.Simmons, McGraw Hill, Second Reprint, 2004.

REFERENCE BOOKS:

1. A First Course in Functional Analysis - C.Goffman and G.Pedrick, Prentice Hall of India, New Delhi, 1987.
2. Introduction to functional analysis - A.E.TAYLor, John Wiley and Sons, New York, 1988.

III SEMESTER

CORE PAPER XII

SUBJECT CODE: 34C

MATHEMATICAL STATISTICS

UNIT I

Random Events: The system of axioms of theory of Probability - Conditional Probability - Baye's theorem - Independent events.
Random Variables: The concept of random variable - The distribution function Random Variables of discrete type and the continuous type - Functions of random variables - Multidimensional random variables - Marginal distributions Conditional distributions - Independent random variables.
(Chapter 1 (except section 1.4); Chapter 2- sections: 2.1 to 2.8)

UNIT II

Parametric of the distribution of a random variable: Expected values - Moments

- The Chebychev inequality - Absolute moments -Order parameters- Moments of random vectors- Regression of first type- Regression of Second type.
(Chapter 3- sections: 3.1 to 3.8)

UNIT III
Characteristic functions: Properties of Characteristic functions - The Characteristic functions and moments - Semi invariance- The Characteristic function of the sum of Independent random variables - Determinations of the distribution function by the Characteristic function

Some probability distributions: One point and two point distributions - The Bernoulli scheme - The binomial distribution - The Poisson scheme - The generalized binomial distribution - The Poisson distribution - The uniform, Normal, Gamma, Beta, Cauchy and Laplace distributions.
(Chapter 4: Sections: 4.1 to 4.5 ; Chapter 5: Sections: 5.1 to 5.10)

UNIT IV

Limit Theorems: Stochastic convergence - Bernoulli's law of large numbers - The Levy-Cramer theorem- De Moivre-Laplace theorem - The Lindeberg - Levy theorem - The Lapunov theorem. (Chapter 6 - sections: 6.1 to 6.9)

UNIT V

Sample moments and their functions : The notion of a sample - Notion of a statistic - Distribution of arithmetic mean of Independent normally distributed random variables - The chi-square distribution - Distribution of the statistic (X, s) - Student's t- distribution - Fisher's Z- distribution

Significance Test: The Concept of a statistical test - Parametric tests for small samples - Parametric test for large samples - The chi-square test.
(Chapter 9 - sections: 9.1-9.7; Chapter 12 - sections: $12.1-12.4$)

TEXT BOOK:

PROBABILITY THEORY AND MATHEMATICAL STATISTICS -

MAREK FISZ, John Wiley and Sons, Third Edition, 1963.

REFERENCE BOOK:

FUNDAMENTALS OF MATHEMATICAL STATISTICS - V.K.KAPOOR
AND S.C.GUPTA, Sultan and Sons, Eleventh Edition.

III SEMESTER

ELECTIVE PAPER III

Subject Code: 35 E

INTRODUCTION TO CRYPTOGRAPHY

UNIT I

Introduction: Encryption and secrecy - Objective of cryptography - Attacks Cryptographic protocols - Provable security.
Symmetric-key Encryption: Stream ciphers - Block ciphers - DES - Modes of operation.

Public-key Cryptography: Concept of public-key cryptography - RSA: Key generation and encryption - Digital signatures - Attacks against RSA - Secure application of RSA encryption.
(Chapter 1 - Sections: 1.1 to 1.5; Chapter 2 - Sections: 2.1, 2.2 and Chapter 3 Sections: 3.1 and 3.3)

UNIT II

Public-key Cryptography (continued): Hash Functions: Merkle's meta method Construction of hash functions - Probabilistic signatures.
Discrete Logarithm: ElGamal's encryption - ElGamal's signature scheme - Digital signature algorithm.
Modular squaring: Rabin's encryption- Rabin's signature scheme
(Chapter 3 - Sections: 3.4 to 3.6)

UNIT III

Cryptographic Protocols:

Key exchange and entity authentication: Kerberos - Diffie-Hellman key Agreementkey exchange and Muthal Authentication - Station- to- Station Protocol- Public key management techniques.
Identification Schemes: Interactive proof systems - Simplified Fiat-Shamir identification scheme - Zero-knowledge - Fiat-Shamir identification scheme and Signature scheme.
(Chapter 4 - Sections: 4.1 - 4.2)

UNIT IV

Cryptographic Protocols (Continued): Commitment schemes: Based on quadratic residues - Based on discrete logarithms. Homomorphic commitments.
Electronic Elections: Secret sharing - Multi-Authority election scheme - Proofs of knowledge.
Digital cash: Blindly issued proofs-A fair electronic cash system.
(Chapter 4 - Sections: 4.3 to $4.4 .3,4.5 .1,4.5 .2$)

UNIT V

Probabilistic Algorithms: Coin-Tossing algorithms - Monte Carlo and Las Vegas algorithms.

Provably Secure Encryption: Classical information- Theoretic security - Perfect secrecy and probabilistic attacks - Public key one-time pads
(Chapter 5 - Sections: 5.1, 5.2 and Chapter 9 - Sections: 9.1 to 9.3)

TEXT BOOK:

Introduction To Cryptography - Hans Delfs And Helmut Knebl, Springer Verlag, 2002.

REFERENCE BOOKS:

1. Cryptography and Network Security - Williams Stallings, Pearson Education, Fourth Edition, 2006.
2. Applied Cryptography - Bruce Schneier, John Wiley and Sons, Second Edition, 1994.
3. Handbook of Applied Cryptography - Alfred J Menezes, Paul C Van Oorschot And Scott A Vanstone, CRC Press, Fifth Edition, 2000.
4. Public-Key Cryptography, Theory And Practice - Abhijith Das And
C.E.Veni Madhavan, Pearson Education, First Edition, 2009.

IV SEMESTER
CORE PAPER XIII
Subject Code: 41 C

OPERATOR THEORY

UNIT I

Fundamental properties of bounded linear operators

Bounded linear operators on a Hilbert space: Norm of bounded linear operators - Adjoint operators - Generalized polarization identity and its applications - Several properties on projection operators - Generalized Schwarz inequality and square root of positive operator - spectral representations of self adjoint operator.
(Chapter 2 - Section: 2.1)

UNIT II

Partial isometry operator:

Partial isometry operator and its characterization
Polar decomposition of an operator: Invariant subspace and reducing subspace Polar decomposition of non-normal operator - Hereditary property on the polar decomposition of an operator.
(Chapter 2 - Sections: 2.2, 2.3)

UNIT III

Spectrum of an operator: Two kinds of classification of spectrum - Spectral mapping theorem
Numerical range of an operator: Numerical range is a convex set - Numerical radius is equivalent to operator norm - The closure of numerical range includes the spectrum - Normaloid operator and spectraloid operator.
(Chapter 2 - Sections: 2.4, 2.5)

UNIT IV

Relations among several classes of non-normal operators: Paranormal operators Characterizations of convexoid operators: some examples related to hyponormal, paranormal, normaloid and convexoid operators - Relations among several nonnormal operators.
(Chapter 2 - Sections: 2.6, 2.7)

UNIT V
Further development of bounded linear operators: Young inequality and Holder - McCarthy inequality - Aluthge transformation on p-hyponormal operators and loghyponormal operators.
(Chapter 3 - Sections: 3.1 to 3.4)

TEXT BOOK:

Invitation to linear operators - Takayuki Furuta, Taylor and Francis, 2001.

REFERENCE BOOK:

Hilbert space problem book - P.R.Halmos, Springer Verlag, New York.

IV SEMESTER

CORE PAPER XIV
Subject Code: 42 C

FLUID DYNAMICS

UNIT I

Kinematics of fluids: Methods of describing fluid motion. Lagrangian method Eulerian method - Translation, Rotation and rate of deformation - Stream lines, path lines and streak lines - Material derivatives and acceleration - Vorticity.

Fundamental Equations of the flow of viscous compressible fluids: The equation of continuity - Conservation of mass - The equation of motion - Conservation of momentum, the equation of energy - Conservation of energy,
(Chapter 3 - Sections: 3.1, 3.1a, 3.1b, 3.2, 3.3a, 3.3b, 3.3c, 3.4, 3.5 and Chapter 5 Sections: 5.1 to 5.3)

UNIT II

One dimensional Inviscid incompressible flow: The equation of continuity Stream tube flow; equation of motion - Euler's equation - The Bernoulli's equation - flow from a tank through a small orifice - Trajectory of a free jet - The momentum theorem.
Two and three dimensional Inviscid incompressible flow: Equation of continuity - Eulerian equation of motion - Circulation theorem (Kelvin's) - Velocity potential Irrotational flow - Integration of the equations of motion - Bernoulli's equation The momentum theorem - The moment of momentum theorem.
(Chapter 6 - Sections: 6.1 to $6.3,6.4 \mathrm{a}, 6.4 \mathrm{~b}, 6.6$ and Chapter 7 - Sections: 7.1, 7.2, 7.3a, 7.3b, 7.3c, 7.4, 7.5, 7.5a, 7.5b, 7.6, 7.7)

UNIT III

Laplace equation - Boundary conditions - Stream function in two dimensional motion - The flow net - Stream function in three dimensional motion - two dimensional flow examples - Rectilinear flow - Source and sink - Radial flow -

Vortex flow - Doublet - Three dimensional axially symmetric flow -Uniform flow Radial flow - Radial flow (source or sink) - Doublet.
(Chapter 7 - Sections: 7.8a, 7.8b, 7.9 to $7.11,7.12 \mathrm{a}, 7.12 \mathrm{~b}, 7.12 \mathrm{c}, 7.12 \mathrm{~d}, 7.13 \mathrm{a}, 7.13 \mathrm{~b}$, 7.13c)

UNIT IV

Laminar flow of viscous incompressible fluids: Similarity of flows - The Reynolds number - Flow between parallel flat plates - Coutte flow - Plane Poiseuille flow Steady flow in pipes - Flow through a pipe - The Hagen-Poiseuille flow - Flow between coaxial cylinders.
(Chapter 8 - Sections: 8.1, 8.3, 8.3a, 8.3b, 8.4a and 8.4b)

UNIT V

Boundary Layer Theory: Boundary layer concept - Boundary layer equations in two dimensional flow - The Boundary layer along a flat plate - The Blasius solution - Boundary layer thickness - Boundary layer on a surface with pressure gradient Momentum integral theorem for the boundary layer - The Von Karman Integral Relation.
(Chapter 9 - Sections: 9.1, 9.2, 9.3a, 9.3b, 9.4, 9.5a)

TEXT BOOK:

Foundation of Fluid Mechanics - S.W.Yuan, Prentice Hall of India Private Limited.

REFERENCE BOOK:

Introduction to Fluid Mechanics - G.K.Batchalor, Cambridge University Press.

IV SEMESTER

FUZZY LOGIC AND FUZZY SETS

UNIT I

Crisp Sets and Fuzzy Sets: The notion of Fuzzy sets - Basic concepts.
Operations on Fuzzy Sets: Fuzzy Complement - Fuzzy Union - Fuzzy Intersection - Combination of operations - General aggregation operations.
(Chapter 1 - Sections: 1.3, 1.4 and Chapter 2 - Sections: 2.2 - 2.6)

UNIT II

Fuzzy Relations: Crisp and Fuzzy relations - Binary relations on a single set Equivalence and similarity relation - Compatibility or tolerance relations Orderings, morphisms, Fuzzy relation equations.
(Chapter 3 - Sections: 3.1-3.8)

UNIT III

Fuzzy Measures: General discussion - Belief and Plausibility measures Probability measures - Possibility and Necessity measures - Relation among classes of fuzzy measures.
(Chapter 4 - Sections: 4.1-4.5)

UNIT IV

Uncertainty and Information: Types of uncertainty - Measures of fuzziness, Classical measures of uncertainty - Measures of dissonance - Confusion and non specificity.
(Chapter 5 - Sections: 5.1-5.6)

UNIT V

Applications: General discussion - Natural life and Social Sciences - Management and Decision making - Computer Science.
(Chapter 6 - Sections: 6.1, 6.2, 6.5, 6.6)

TEXT BOOK:

Fuzzy Sets, Uncertainty and Information - George J.Klir and Tina A.Folger, Prentice Hall of India, New Delhi, 2007.

REFERENCE BOOK:

1. Fuzzy Sets and Fuzzy Logic Theory and Applications - George J.Klir and Bo Yuan, Prentice Hall of India, New Delhi, 2006.
2. FUZZY LOGIC WITH ENGINEERING APPLICATIONS, Timothy J. ROSS WILLEY, India Pvt. Ltd., NewDelhi, Second Edition Reprint, 2009.

IV SEMESTER

CORE PAPER XVI
Subject Code: 44 C

SOLID MECHANICS

UNIT I

Analysis of Stress: Body Force - Surface force and stress vector - The state of stress at a point - Normal and shear stress components - Rectangular stress components Stress components on an arbitrary plane - Digression on ideal fluid - Equality of cross shears - A more general theorem - Principal stresses - Stress invariants Principal planes are orthogonal - Cubic equation has three real roots - Particular cases - Recapitulation - The state of stress referred to principal axes - Mohr's circles for the three dimensional state of stress - Mohr's of stress plane - Planes of maximum shear - Octahedral stresses - The state of pure shear - Decomposition into hydrostatic and pure shear states - Cauchy's stress quadric - The plane state of stress

- Differential equations of equilibrium - Equilibrium equations for plane stress state - Boundary conditions - Equations of equilibrium in cylindrical coordinates Problems
(Chapter 1 - Sections: 1.1 - 1.30)

UNIT II

Analysis of Strain: Deformations - Deformation in the neighborhood of a point. Change in length of a linear element: Change in length of a linear element - Linear components - Rectangular strain components - The state of strain at a point Interpretation of $\gamma_{x y z}, \gamma_{y z} \gamma_{x z}$ as shear strain components - Change in direction of a linear element - Cubical dilatation - Change in the angle between two line elements - Principal axes of strain and principal strains - Plane state of strain - The principal axes of strain remain orthogonal after strain - Plane strains in polar co-ordinates Compatibility conditions - Strain deviator and its invariants - Problems.
(Chapter 2 - Sections: 2.1-2.17)

UNIT III

Stress - Strain Relations for Linearly Elastic Solids: Generalized statement of Hooks's law - Stress-strain relations for isotropic materials - Modulus of rigidity Bulk modulus - Young's modulus and Poisson's ratio - Relations between the elastic constants - Displacement equations of equilibrium - Problems.
(Chapter 3 - Sections: 3.1-3.8)

UNIT IV

Axisymmetric Problems: Thick-walled cylinder subjected to internal and external Pressures - Lame's problems - Stresses in composite tubes - Shrink fits - Sphere with purely radial displacements - Stresses due to gravitation - Rotating disks of uniform thickness - Disks of variable thickness - Rotating shafts and cylinders Summary of results for use in problems - Problems.
(Chapter 8 - Sections: 8.1 -8.9)

UNIT V

Thermal Stresses: Thermo elastic stress - Strain relations - Equations of equilibrium - Strain displacement relations - Some general results - Thin circular disk; Temperature symmetrical about centre - Long circular cylinder - Problem of a sphere - Normal stresses in straight beams due to thermal loading - Stresses in curved beams due to thermal loading - Problems.
(Chapter 9 - Sections: 9.1-9.10)

TEXT BOOK:

Advanced Mechanics of Solids - L.S.Srinath, Tata McGraw Hill Education Private Limited, New Delhi, Third Edition, 2011.

REFERENCE BOOKS:

1. Solid Mechanics - S.M.A.Kazimi, Tata McGraw Hill Education Private Limited, New Delhi, First Revised Edition, 1974.
2. Theory of Elasticity - P.S.D.Verma, Vikas Publishing House Private Limited, New Delhi, 1998.

IV SEMESTER

ELECTIVE PAPER IV
Subject Code: 45 E

MATLAB

UNIT I

Basics of MATLAB - Creating and working with arrays of numbers - Creating and printing simple plots - Creating, saving and executing a script file - Creating and executing a function file - Working with arrays and matrices - Symbolic computation - Publishing reports.
(Chapter 1 - Section: 1.6 and Chapter 2 - Sections: 2.1-2.6, 2.8 and 2.11)

UNIT II

Matrices and vectors - Matrix and array operations - Character strings - A special note on array operations - Command line functions - Using built-in functions and online help - Plotting simple graphs.
(Chapter 3 - Sections: 3.1-3.6, 3.8)

UNIT III

Script files - Function files - Language-specific features - Advanced data objects (Chapter 4 - Sections: 4.1 -4.4)

UNIT IV

Applications - Linear algebra - Curve fitting and interpolation - Data analysis and statistics - Numerical integration
(Chapter 5 - Sections: 5.1 -5.4)

UNIT V

Ordinary Differential Equations - Nonlinear algebraic equations - Advanced topics Basic 2-D plots.
(Chapter 5 - Sections: 5.5.1, 5.5.2, 5.6, 5.7 and Chapter 6 - Section: 6.1)

TEXT BOOK:

Getting Started with MATLAB, updated for version 7.8 - Rudra Pratap, Oxford University Press 2010.

REFERENCE BOOKS:

1. Matlab, An Introduction with Applications - Amos Gilat, Wiley Student Edition.
2. Numerical computing with Matlab - Cleve B.Moler, Web Edition, Published by the Mathworks, Inc.

I SEMESTER

CORE PAPER
Subject code: 13C

MATHEMATICAL FOUNDATIONS FOR COMPUTER
 SCIENCE
 (For MCA)

UNIT I

Mathematical Logic: Introduction - Connectives, NAND \& NOR connectivesTautology and Contradiction-Truth tables-Equivalence formulae-Normal formsPrincipal disjunctives normal forms-Principal conjunctive normal forms (Chapter: Sections:1.1 to $1.2,1.2 .1$ to 1.2.4,1.2.6,1.2.8 to $1.2 .11,1.3,1.3 .1$ to 1.3.4)

UNIT II

Theory of Inference for Statement Calculus: Rules of inference-Direct and indirect method of proof. (Chapter 1: Sections 1.4)

Finite Automata: Deterministic finite automata-Non-deterministic automata.

- Introduction to compatibility theory (Chapter 6: sections:6.1)

UNIT III

Vector Algebra: Definition - Addition and subtraction of vectors - Position vector Composition of vectors - Rectangular unit vectors - Vector product - Scalar product - Cross product - Scalar triple product - Vector triple product.
(Chapter 8: Sections 1 to 8)

UNIT IV

The Solution of Numerical Algebraic and transcendental equations: Bisection method-Iteration method-Regula falsi method-Newton-Raphson method. (Chapter 3sections:3.1,3.1.1,3.2,3.3,3.4)

UNIT V

Solution of Simultaneous Linear Algebraic equations: Direct method:Gauss elimination method-Gauss Jordon method.Indirect method:Gauss Jacobi methodGauss Seidel method of iteration. (Chapter 4-ections:4.1,4.2,4.2.1,4.7 to 4.9)

TEXT BOOKS:

1. DISCRETE MATHEMATICAL STRUCTURES WITH APPLICATIONS TO COMPUTER SCIENCE-J.P.TREMBLAY AND R.MANOHAR,Tata McGraw Hill Publishing Company Limited, Tenth Reprint 2000.(For Units I and II)
2. ANCILLARY MATHEMATICS - VOL II - S.NARAYANAN, R.HANUMANTHA RAO and T.K.MANICAVACHAGAM PILLAY, S.VISWANATHAN Printers and Publishers PVT Ltd, 2011. (For Unit III)
3. NUMERICAL METHODS- K.P.KANDASAMY,DR.K.THILAGAVATHY AND DR.K.GUNAVATHY,S.Chand and Company Limited, New Delhi, Revised edition 1999.(For Unit IV and V)

REFERENCE BOOK:

DISCRETE MATHEMATICS WITH GRAPH THOERY AND
COMBINATORICS- T. VEERARAJAN, Tata McGraw Hill Publishing Company, New Delhi, Fifth Reprint, 2008

II SEMESTER

CORE PAPER

Subject code:

OPERATIONS RESEARCH (For MCA)

UNIT I

Linear Programming Problem - Formulation of L.P.P - Graphical solutions of L.P.P - Simplex Method. Charnes Penality Method (or) Big - M Method -Duality in L.P.P - Primal and Dual Problems.
(Chapter 2 - Sections:2.1 to 2.4;Chapter 3 - Sections: 3.1 and 3.2; Chapter 4 Sections:4.1 to 4.4;Chapter 5 - Sectionos :5.1 to 5.4)

UNIT II

The transportation problems - Basic feasible solution by L.C.M - NWC - VAM Optimum solutions - Unbalanced- Transportation problems. The Assignment problems - Introduction - Mathematical formulation - Hungarian assignment method.
(Chapter 10 - Sections:10.1 to10.10, 10.13 ; Chapter 11 - Sections: 11.1 to 11.3)

UNIT III

Replacement model: Introduction - Replacement of items that deteriorates gradually- value of money does not change with time-value of money changes with time- Replacement of items that fails suddenly.

Individual Replacement- Group replacement.
(Chapter 18-Sections:18.1 to 18.3)

UNIT IV

Network scheduling by PERT/CPM - Introduction-Network and basic component -Rules of network construction - time calculation in Networks-CPM. PERT-PERT calculations.
(Chapter 25 - Sections:25.1 to 25.8)

UNIT V

Queuing theory: Introduction-Charateristics of Queuing system- Problems from single server:finite and infinite population model-Problems from multi server:finite and infinite Population model.
(Chapter 21-Sections:21.1 to 21.9)

TEXT BOOKS:

OPERATIONS RESEARCH-KANDISWARUP,P.K.GUPTA AND MAN MOHAN, S. Chand \& Sons education Publications, New Delhi, Fourteen Revised Edition. Reprint 2009

REFERENCE BOOKS:

1. OPERATIONS RESEARCH-AN INTRODUCTION -HAMDY A.TAHA, Seventh Edition, Pearson Education, Reprint 2005.
2. INTRODUCTION TO OPERATIONS RESEARCH-FREDRICK
S.HILLIER GERALD J.LIEBERMAN, Seventh Edition, Tata McGraw Hill Publishing Company Limited, Reprint 2001.
3. OPERATIONS RESEARCH THEORY AND APPLICATIONS-
J.K.SHARMA Macmillian India Limited, Second Edition, Reprint 2003.
4. PROBLEMS IN OPERATIONS RESEARCH - P.K.GUPTA AND
D.S.HIRA, Third Edition, S.Chand and Company Limited, Reprint 2005
